Skip logo, search and navigation. Go straight to the main content.

Publications

Articles in refereed scientific journals

  1. Argatov, I., 2013. Contact problem for a thin elastic layer with variable thickness: Application to sensitivity analysis of articular contact mechanics, Applied Mathematical Modelling, DOI:10.1016/j.apm.2013.03.042.
  2. Argatov, I.I., 2013. Mathematical modeling of linear viscoelastic impact: Application to drop impact testing of articular cartilage, Tribology International, 63, 213–225.
  3. Argatov, I., Iantchenko, A., 2013. Resonance spectrum for a continuously stratified layer: application to ultrasonic testing, Waves in Random and Complex Media, 23, 24–42.
  4. Argatov, I.I., Sabina, F.J., 2013. Asymptotic analysis of the substrate effect for an arbitrary indenter, Quarterly Journal of Mechanics and Applied Mathematics, 66, 75–95.
  5. Argatov, I., Daniels, A.U., Mishuris, G., Ronken, S., Wirz, D., 2013. Accounting for the thickness effect in dynamic spherical indentation of a viscoelastic layer: Application to non-destructive testing of articular cartilage, European Journal of Mechanics A/Solids, 37, 304–317.
  6. Argatov, I., 2012. A subject-specific postural instability parameter, Gait and Posture, DOI 10.1016/j.gaitpost.2012.06.014.
  7. Argatov, I., 2012. An analytical solution of the rebound indentation problem for an isotropic linear viscoelastic layer loaded with a spherical punch, Acta Mechanica, DOI 10.1007/s00707-012-0668-2.
  8. Argatov, I., 2012. Development of an asymptotic modeling methodology for tibio-femoral contact in multibody dynamic simulations of the human knee joint, Multibody System Dynamics (Thematic issue on biomechanics of human motion), 28, 3–20.
  9. Argatov, I., 2011. Slow vertical motions of a spherical indenter on an elastic half-space, Quarterly Journal of Mechanics and Applied Mathematics, DOI 10.1093/qjmam/hbr023.
  10. Argatov, I.I., Guinovart-Díaz, R., Sabina, F.J., 2012. On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint, International Journal of Engineering Science, 54, 42–57.
  11. Argatov, I.I., Sabina, F.J., 2012. Spherical indentation of a transversely isotropic elastic half-space reinforced with a thin layer, International Journal of Engineering Science, 50, 132–143.
  12. Argatov, I., 2012. Sinusoidally-driven flat-ended indentation of time-dependent materials: Asymptotic models for low and high rate loading, Mechanics of Materials, 48, 56–70.
  13. Argatov, I., Mishuris, G., 2011. Contact problem for thin biphasic cartilage layers: Perturbation solution, Quarterly Journal of Mechanics and Applied Mathematics, 64, 297–318.
  14. Argatov, I., 2011. Depth-sensing indentation of a transversely isotropic elastic layer: Second-order asymptotic models for canonical indenters, International Journal of Solids and Structures, 48, 3444–3452.
  15. Argatov, I., Mishuris, G., 2011. An analytical solution for a linear viscoelastic layer loaded with a cylindrical punch: Evaluation of the rebound indentation test with application for assessing viability of articular cartilage, Mechanics Research Communications, 38, 565–568.
  16. Argatov, I., Mishuris, G., 2011. Frictionless elliptical contact of thin viscoelastic layers bonded to rigid substrates, Appl. Math. Model. 35, 3201–3212.
  17. Argatov, I., Mishuris, G., 2011. Elliptical contact of thin biphasic cartilage layers: Exact solution for monotonic loading,J. Biomech.44, 759–761.
  18. Argatov, I., 2011. A general solution of the axisymmetric contact problem for biphasic cartilage layers,Appl. Math. Model. 38, 2011, 29–33.

Monograph

  1. Argatov, I., Mishuris, G., 2015. Contact Mechanics of Articular Cartilage Layers: Asymptotic Models. Springer, Cham.

Articles in refereed international scientific conference proceedings

  1. Argatov, I., 2011. Development of an asymptotic modelling methodology for tibio-femoral contact in multibody dynamic simulations of the human knee joint, EUROMECH Colloquium 511 on Biomechanics of Human Motion, J. Ambrósio et al. (Eds.) Ponta Delgada, Azores, Portugal, pp. 1–16.
  2. Iantchenko, A., Argatov, I., 2011. Resonance spectrum for a continuously stratified layer with application to ultrasound testing of articular cartilage, NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, Vol. 1389, pp. 451–454.
  3. Argatov, I., 2011. Asymptotic methods in the axisymmetric non-stationary dynamic contact problem for a rigid spherical indenter on an elastic half-space, Proceedings of the 7th European Nonlinear Dynamics Conference (ENOC 2011), Eds: D. Bernardini, G. Rega and F. Romeo, 24–29 July 2011, Rome, Italy, pp. 1–2.
  4. Argatov, I., Mishuris, G., 2011. Viscoelastic incompressible layer model for articular cartilage contact, Proceedings of the XXIIIrd Congress of the International Society of Biomechanics (ISB2011), 3–7 July 2011, Brussels, Belgium, pp. 1–2.

Preprints

  1. Argatov, I.I., 2012. Sinusoidally-driven unconfined compression test for a biphasic tissue, arXiv:1207.4679v1 (http://arxiv.org/pdf/1207.4679v1.pdf)
  2. Argatov, I.I., 2012. Mathematical modeling of linear viscoelastic impact: Application to drop impact testing of articular cartilage, arXiv:1206.2681v1 (http://arxiv.org/pdf/1206.2681v1.pdf)
  3. Argatov, I., 2012.Contact problem for a thin elastic layer with variable thickness: Application to sensitivity analysis of articular contact mechanics, arXiv:1205.1381 (http://arxiv.org/pdf/1205.1381.pdf)
  4. Argatov, I., Daniels, A.U., Mishuris, G., Ronken, S., Wirz, D., 2012. Accounting for the thickness effect in dynamic spherical indentation of a viscoelastic layer: Application to non-destructive testing of articular cartilage, arXiv:1203.0918 (http://arxiv.org/pdf/1203.0918v1.pdf).
  5. Argatov, I., Iantchenko, A., 2012. Asymptotics of the resonances for a continuously stratified layer, arXiv:1202.0665v1 (http://arxiv.org/pdf/1202.0665v1.pdf)
  6. Argatov, I., Mishuris, G., 2011. Flat-ended rebound indentation test for assessing viability of articular cartilage: Application of the viscoelastic layer model, arXiv:1102.2054v1
    (http://arxiv.org/PS_cache/arxiv/pdf/1102/1102.2054v1.pdf).
  7. Argatov, I., Mishuris, G., 2011. A closed-form solution of the three-dimensional contact problem for biphasic cartilage layers, arXiv:1009.4490v1
    (http://arxiv.org/PS_cache/arxiv/pdf/1009/1009.4490v1.pdf).