

THE EXACT FACTORISATION OF MATRIX POLYNOMIALS

Nataliia Adukova, Gennady Mishuris

Department of Mathematics, Aberystwyth University, Aberystwyth, SY23 3BZ

1. Wiener-Hopf Factorisation

 $A(t) = A_{-}(t) D(t) A_{+}(t)$

3. Applications

3

Pure Mathematics

- boundary value problems (BVPs) in complex analysis (Riemann boundary value problem, Hilbert boundary
- a link between complex analysis and functional analysis: theory of linear operators in Banach spaces, Toeplitz operators, Wiener-Hopf operators and analytic theory of differential equations (Hilbert's 21st problem)

Applied Mathematics

- systems of singular integral equations with the Cauchy kernel, a kernel depending on the difference of the arguments, and systems of an infinite number of equations, etc.
- BVPs for systems of differential equations in partial derivatives with mixed boundary conditions

Mechanics

- of elastic and viscoelastic solids with
- waves in solids and structures with defects

Mechanical and Structural Engineering, **Geomechanics**, Fracture Mechanics, Maritime Engineering, etc.

Physics

- solution of nonlinear equations of mathematical physics by the method of the inverse scattering problem theory of solitons
- diffraction of electromagnetic and coitsation problems
- acoustic waves problems of geophysics

Financial Mathematics

- pricing barrier options risk management
- time series analysis

6. Our Package: the ExactMPF

The package checks: is it possible to find the exact factorisation for it?

YES

• the right and left factorisations

the partial indices

the exact factorisation is not possible

Our package:

NO

- the first and only one package in which the
- factorisation can be performed • the process of constructing the factorisation is
- fully automated • the right and left factorisations are found simultaneously

The Wiener-Hopf

- factorisation method:
- is a step towards solving a 60-year-old problem in unstable matrix factorisation • unlocks new applications, among others, in

quantum information science

2. Example

Goal: to automate the factorisation of matrix functions and apply it in practice

4. Obstacles

Obstacle 1: absence of the explicit formulae for constructing factorisation and calculating partial indices

7. Why should you care?

Obstacle 2: the factorisation problem is not always stable

5. Solutions

Scenario 1: polling results match (XYZ and XYZ)

Stable factorisation **Unstable factorisation Solution 2:** solve the problem exactly prove the

existence criterion for the exact solution to the factorisation problem for matrix polynomials

a NEW ERA in FACTORISATION: the COMPUTATION REVOLUTION!

8. The ExactMPF: **Success Cases**

- the numerical solution of the discrete Schrödinger equation (Fig.1 and Fig.2)
- a stable factorisation of strictly nonsingular 2×2 matrix
- functions (Fig. 3 and Fig. 4)

Fig 2. Stable reconstruction of wave dynamics with the ExactMPF

Fig 4. The exact factorisation of the

factorisation of piecewise constant matrix functions

Nataliia Adukova