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We model and derive the solution for the problem of a Mode I semi-infinite crack

propagating in a discrete triangular lattice with bonds having a contrast in stiffness in the

principal lattice directions. The corresponding Green’s kernel is found and from this wave

dispersion dependencies are obtained in explicit form. An equation of the Wiener–Hopf

type is also derived and solved along the crack face, in order to compute the stress

intensity factor for the semi-infinite crack. The crack stability is analysed via the

evaluation of the energy release rate for different contrasts in stiffness of the bonds.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Models for cracks propagating in lattices have been extensively studied in Slepyan (2002) and Marder and Gross (1995).
As noted in Marder and Gross (1995), discrete models enable one to answer fundamental questions about the influence of
the micro-structure on the crack motion, and in particular, about the origins of crack instability. Marder and Gross have
observed that analytical models of cracks in a lattice involve bond-breaking terms, which are in general non-linear. They
have also noted that a nonlinear interaction can be approximated by a linear interaction if bonds along the crack break in
sequence. A fracture criterion is also an important part of a numerical simulation describing advance of a crack through a
lattice.

We make an emphasis on non-uniformity within a lattice, which can bring new effects in the wave dispersion and
filtering properties of the structure. These non-uniformities may be caused, for example, by thermal pre-stress of a
constrained lattice whose ligaments have different coefficients of thermal expansion. Linearisation near the pre-stressed
state may lead to a model of a lattice with contrasting stiffnesses of bonds. An important example corresponds to stratified
systems represented by a triangular lattice, where the stiffness of horizontal bonds differs from the stiffness of other
bonds. Such an elastic lattice, containing a moving crack, is analysed in the present paper. Throughout the text, we use
the notion of the moving system of coordinates linked to the crack tip. While the emphasis here is made on the
analytical findings, the computational models for different fracture criteria are of paramount importance. A separate
computational study of advancing crack, based on a deformational fracture criterion, has been presented in Slepyan and
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Ayzenberg-Stepanenko (2002) for the homogenous triangular lattice, and in Colquitt et al. (2012) for the case when the
lattice is not uniform.

The full analytical solution is derived here in terms of Fourier transforms for a general type of load following the
moving crack. For practical computations, the load has been chosen as in Slepyan (2002) to represent the remote force
distant from the crack tip.

Problems involving inhomogeneous lattices containing semi-infinite cracks have been recently analysed. Examples
include those containing particles of contrasting mass (Mishuris et al., 2007), and the dynamic extraction of a chain within
the lattice (Mishuris et al., 2008).

The propagation of the crack may be caused by feeding waves, generated by some remote source, which lead to the
breaking of subsequent bonds within the lattice. Feeding waves bring energy to the crack-front bonds which cause their
disintegration one by one and this produces dissipative waves which carry energy away from the front. This process has
been investigated in Slepyan (2001a), where Mode III crack propagation within a square-cell lattice is considered, under
the assumption of uniform straight line crack growth, and steady state solutions have been obtained. The lattice is
assumed to have bonds of identical stiffness which connect particles having a common mass.

The analysis of Mode I and II crack propagation in a uniform discrete triangular lattice was studied in Slepyan (2001b).
Compared to the case of the square-cell lattice, the equations of motion relate components of the vector field of
displacements. It has been shown that both the solution to this problem and the explicit form of wave dispersion relations
can be obtained.

From these lattice models, it is possible to determine the regions of crack speeds for which we have steady state crack
motion, and the stability of these states can also be determined by computing the energy release rate for the crack. This
has been examined in Fineberg and Marder (1999), Marder and Gross (1995) and Marder and Liu (1993). Another
application for a lattice problem is found in Slepyan et al. (2010). Here, the model describing a structured interface along a
crack with a harmonic feeding wave localised at the faces was used to predict the position of the crack front. Numerical
simulations were presented in Mishuris et al. (2009a) and Slepyan et al. (2010) showing that, for a given range of
frequencies of the feeding wave, it was possible to have uniform crack growth or, in the non-linear regime of non-steady
propagation, to identify an average crack speed, which is consistent with the prediction of the linear model linked to the
crack propagating steadily.

The method of solution of these problems involves formulating the discrete lattice problem in terms of the Fourier
transforms of functions describing the displacements (Mishuris et al., 2009b). A Wiener–Hopf functional equation is then
derived along the crack faces and factorised to obtain the solution. The kernel in the Wiener–Hopf equation has the
interpretation of the Fourier transform of the derivatives of Green’s kernel. Similar features also appear in continuum
models of cracks which are solved using singular integral equation techniques.

In this paper, using the method in Slepyan (2001b), our main goal is to solve the problem for a discrete triangular
lattice, which is constrained at infinity, containing a semi-infinite crack with additional inhomogeneities being brought by
the inclined bonds having a contrast in stiffness to the horizontal bonds (see Fig. 1). This contrast in stiffness may arise as
an effect of thermal pre-stress, for instance, heating a lattice with bonds that have different coefficients of thermal
expansion in the principal directions. The problem for a crack in the uniform triangular lattice has been studied in Slepyan
(2002, Chapter 12).

The plan of the paper is as follows. Section 2 includes the description of the problem for a two dimensional lattice with
a semi-infinite crack, containing particles of common mass with bonds having contrasting stiffnesses in the principal
directions. In Section 3, we rewrite the problem for the lattice using the continuous Fourier transform in the crack line
direction, and these equations are solved for the displacements of a particle inside the lattice. A Wiener–Hopf equation for
particles along the line of the crack is then written in Section 4 and the representation of the kernel function of this
equation is derived. An analysis of the dispersion relations obtained from the roots and poles of the kernel function is
carried out in Section 5. In Section 6, we solve the Wiener–Hopf equation of Section 4. In Section 7, we evaluate the energy
Fig. 1. The inhomogeneous lattice containing a semi-infinite crack showing the lattice coordinates. The crack is located between the rows n¼�1

and n¼0.
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release rate for the crack propagating through the inhomogeneous lattice and investigate its sensitivity to the crack speed
and to the stiffness contrast. We compute the stress intensity factor for the semi-infinite crack propagating through the
inhomogeneous lattice and show its behaviour, for different stiffness contrasts, as a function of the crack speed in
Section 8. In Section 9, we give conclusions on the results presented here.

In addition to the main text of the paper, we also provide Appendices which include more details of the derivations of
the results contained in the main body of the paper. In Appendix A, the coefficient of the leading order term of the
asymptotics for the kernel function near the zero wavenumber is studied. Some comments relating to the analysis of the
poles for the kernel function of the Wiener–Hopf equation are presented in Appendix B. Properties of the kernel function
which are necessary for its factorisation as a product of two functions, analytic in different halves of the complex plane, are
proved in Appendix C. In Appendix D, the derivation of the solution to the Wiener–Hopf equation is given. Finally,
asymptotes in the vicinity of the zero wavenumber for the functions obtained after the factorisation of the kernel function
are derived in Appendix E.

2. Elastic lattice and the governing equations

2.1. The notion of Slepyan’s crack

The crack in the infinite triangular lattice considered here (see Fig. 1), is a semi-infinite fault which appears as the result
of subsequent breakage of bonds in a straight line, and propagates with a constant speed V according to Z¼ x�Vt (e.g.
between rows n¼0 and �1 in Fig. 1). Here, x is the horizontal coordinate associated with the crack tip node, directed in the
line of the propagation of the crack, and t is time. This approach to describing the crack propagation, was first used in
Slepyan (2001b). It allows for the reduction of the full transient problem to a simple difference problem in the vertical
direction following the Fourier transform with respect to Z, where the forces in the bonds of the lattice can be linked to the
displacements and stresses through a Wiener–Hopf equation along the crack. Dispersion properties of this lattice
configuration can also be obtained through the roots and poles of the kernel function involved this equation. The approach
is elegant and leads to a closed form solution. One of the drawbacks is that the model does not serve the case of small crack
velocities, as discussed further in the text below. However, for a finite range of values of a subsonic crack speed, one can
identify a regime of steady crack propagation. In the real physical situation, crack propagation can be treated in the
averaged sense, and the average crack velocity can be evaluated, as discussed in Mishuris et al. (2009a).

2.2. Non-uniform lattice

We consider a triangular lattice containing a semi-infinite crack (see Fig. 1), where horizontal bonds are assumed to
have stiffness m1 and diagonal bonds stiffness m2. In the following, the ratio of bar stiffnesses is a¼ m1=m2. The length of the
bonds connecting the particles is normalised to 1. All particles are assumed to have identical mass m.

To characterise the positions of masses within the lattice, it is convenient to use the basis vectors e0 ¼ ð1,0ÞT and
e1 ¼ ð1=2,

ffiffiffi
3
p

=2ÞT . The in-plane displacement vector at the node x¼ ke0þne1, where k,n are integers, is uðt,xÞ. Projected
displacements onto the horizontal and vertical axes, associated with the crack tip node, are denoted by u and v, respectively.

It is also assumed that the external forces G and H act on the nodes along n¼0. Along n¼0 the forces G and H are
directed along �e1 and e0�e1, respectively (see Fig. 2). The exact form of these forces will be specified in Section 4.

We define the constant

CR ¼
1

2m1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1þm2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

1þðm1�m2Þ
2

qr
, ð2:1Þ

as the critical surface wave speed for a wave that propagates along the crack faces aligned with the x-axis, which are
traction free. The crack is assumed to propagate steadily through lattice with speed V rCR, and this propagation is caused
by the breaking of the bonds between rows n¼�1 and n¼0. Note that for bond length normalised to 1 and m1 ¼ m2 the
Fig. 2. The particles along the crack face at n¼0, acted on by external forces G and H.
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above expression coincides with that for the Rayleigh wave speed for the homogeneous infinite triangular lattice with a
semi-infinite crack (Slepyan, 2002).

2.3. Normalised crack speed

Let Vn be the dimensionless crack speed defined by Vn ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffi
m=m2

p
. Since we consider the sub-critical surface wave

speed regime, using (2.1) we obtain

V2
n
rgðaÞ ¼ C2

Rm

m2

¼
2aþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2þða�1Þ2

q
4

: ð2:2Þ

Proposition 1. The function gðaÞ is increasing for a40, with 0ogðaÞr3=8 and dg=dao3=4.

Proof. For gðaÞ, in (2.2), we have

dg

da ðaÞ ¼
1

2
�

4a�1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2þða�1Þ2

q ,

and with 0oar1=4, it is clear that gðaÞ is an increasing function on this interval. Now, let a41=4. Using the inequality

3a2þða�1Þ24
ð4a�1Þ2

4
, ð2:3Þ

leads to

dg

da ðaÞ40, for a41=4:

Therefore, gðaÞ is an increasing function for a40, and

gð0Þ ¼ 0, and gðaÞr lim
a-1

gðaÞ ¼ 3

8
, a40:

Next, owing to (2.3)

d2g

da2
ðaÞ ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2þða�1Þ2

q ð1�4aÞ2

3a2þða�1Þ2
�4

 !
o0,

which shows dg=da is a decreasing function, that takes its maximum as a-0

dg

da
ð0Þ ¼

3

4
: &

2.4. Dynamic equations for the lattice above the crack

The equations of motion for a particle inside the lattice ðn40Þ are

m €u ¼ m1e0 � u9xþe0
þu9x�e0

�2u9x

n o
e0þm2

X
j ¼ 1,2

vj � u9xþvj
þu9x�vj

�2u9x

n o
vj, ð2:4Þ

where v1 ¼ e1 and v2 ¼ e1�e0.
Making a change of variable to the moving coordinate system, we set Z¼ x�Vt. Then (2.4) in terms of projected

displacements becomes

mV2

m2

d2u

dZ2
ðZ,nÞ�

1

4
½uðZþ1=2,nþ1ÞþuðZ�1=2,nþ1ÞþuðZþ1=2,n�1ÞþuðZ�1=2,n�1Þ�

�

ffiffiffi
3
p

4
½vðZþ1=2,nþ1Þ�vðZ�1=2,nþ1ÞþvðZ�1=2,n�1Þ�vðZþ1=2,n�1Þ�

�a½uðZþ1,nÞþuðZ�1,nÞ�þð1þ2aÞuðZ,nÞ ¼ 0,

and

mV2

m2

d2v

dZ2
ðZ,nÞ�

ffiffiffi
3
p

4
½uðZþ1=2,nþ1Þ�uðZ�1=2,nþ1Þ�uðZþ1=2,n�1ÞþuðZ�1=2,n�1Þ�

�
3

4
½vðZþ1=2,nþ1ÞþvðZ�1=2,nþ1ÞþvðZþ1=2,n�1ÞþvðZ�1=2,n�1Þ�þ3vðZ,nÞ ¼ 0,

where uðZ,nÞ and vðZ,nÞ are the horizontal and vertical components, respectively, of the displacement vector u, along row n

after the change of variable.
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3. Solution for the lattice half-plane

Here, for the intact part of the lattice ðn40Þ we will obtain the solution to the problem of Section 2.4. We follow the
method discussed in Slepyan (2001b), which makes use of the continuous Fourier transforms uF and vF with respect to the
moving coordinate associated with the crack. The Fourier transform is defined as

UF
¼

Z 1
�1

UðZÞeixZ dZ,

where the Fourier transform variable x represents the wavenumber. We also introduce the left-sided and right-sided
Fourier transforms U� and Uþ

U7 ¼

Z 1
�1

UðZÞHð7ZÞeixZ dZ,

where H is the Heaviside function. When regularisation is needed, x is assumed to be complex with 7 Im x40.

3.1. The continuous Fourier transform of the system

We take the Fourier transform with respect to Z, and obtain

½uF ðx,nþ1ÞþuF ðx,n�1Þ� cosðx=2Þ�2½1þ2að1�cosðxÞÞþmðeþ ixVÞ2=m2�u
F ðx,nÞ

�i
ffiffiffi
3
p

sinðx=2Þ½vF ðx,nþ1Þ�vF ðx,n�1Þ� ¼ 0, ð3:1Þ

3½vF ðx,nþ1ÞþvF ðx,n�1Þ� cosðx=2Þ�2½3þmðeþ ixVÞ2=m2�v
F ðx,nÞ

�i
ffiffiffi
3
p

sinðx=2Þ½uF ðx,nþ1Þ�uF ðx,n�1Þ� ¼ 0, ð3:2Þ

where e is the regularisation parameter, 0oe51.

3.2. General solution for the half-plane lattice

The functions uF and vF are sought in the form

uF ¼ CLn and vF ¼DLn:

Insertion of these into (3.1) and (3.2) yield

CfðLþ1=LÞ cosðx=2Þ�2½1þ2að1�cosðxÞÞþmðeþ ixVÞ2=m2�g�i
ffiffiffi
3
p

sinðx=2ÞðL�1=LÞD¼ 0,

Df3ðLþ1=LÞ cosðx=2Þ�2ð3þmðeþ ixVÞ2=m2Þg�i
ffiffiffi
3
p

sinðx=2ÞðL�1=LÞC ¼ 0:

For non-trivial solutions of C and D, the biquadratic equation in terms of L must be satisfied

ðLþ1=LÞ2�2 2þ2að1�cosðxÞÞþ
4

3m2

mðeþ ixVÞ2
� �

ðLþ1=LÞ cosðx=2Þ

þ2f1þcosðxÞþ4að1�cosðxÞÞgþ
4

3m2

mðeþ ixVÞ2 4þ2að1�cosðxÞÞþ
m

m2

ðeþ ixVÞ2
� �

¼ 0: ð3:3Þ

We require that 9L9r1, and this leads to the solutions

Lj ¼ zj7
ffiffiffiffiffiffiffiffiffiffiffi
z2

j �1
q

, j¼ 1,2, ð3:4Þ

where the sign in front of the square root in Lj has to be chosen so that the condition 9Lj9r1, j¼1,2, for x 2 R and V 40,
is satisfied. For j¼1, 2

zj ¼ 1þ2a sin2
ðx=2Þþ

2mðeþ ixVÞ2

3m2

 !
cosðx=2Þþð�1Þj

m2ðeþ ixVÞ4

9m2
2

�4 sin2
ðx=2Þ a sin2

ðx=2Þþ
mðeþ ixVÞ2

3m2

 !"

� a sin2
ðx=2Þþ

mðeþ ixVÞ2

3m2

þ1�a
 !#1=2

: ð3:5Þ

Then for n40, with such choices of L, the Fourier transforms of the displacements have the form

uF ðx,nÞ

vF ðx,nÞ

 !
¼

1

f vðL1Þf vðL2Þ

f vðL1Þf vðL2Þ f vðL1Þf vðL2Þ

�if uðL1Þf vðL2Þ �if uðL2Þf vðL1Þ

 !
C1L

n
1

C2L
n
2

 !
, ð3:6Þ

where

f uðLÞ ¼�
ffiffiffi
3
p

sinðx=2ÞðL2
�1Þ and f vðLÞ ¼ 3ðL2

þ1Þ cosðx=2Þ�2Lð3þmðeþ ixVÞ2=m2Þ,

and Cj, j¼1, 2 are arbitrary constants, to be determined.
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3.3. Mode I symmetry conditions

For Mode I, using the symmetry relations

uðZ,�n�1Þ ¼ uðZ,nÞ, vðZ,�n�1Þ ¼�vðZ,nÞ, ð3:7Þ

we can extend the solution in the upper half-plane (3.6) to the lower half-plane. Then, for nr�1, the Fourier transforms of
the horizontal and vertical displacements are

uF ðx,nÞ

vF ðx,nÞ

 !
¼

1

f vðL1Þf vðL2Þ

f vðL1Þf vðL2Þ f vðL1Þf vðL2Þ

if uðL1Þf vðL2Þ if uðL2Þf vðL1Þ

 !
C1L�n�1

1

C2L
�n�1
2

 !
:

The elongations in the bonds directed along �e1 and e0�e1, respectively, for a node in the upper half-plane of the lattice,
have the form

SðZ,nÞ ¼
1

2
½uðZ,nÞ�uðZ�1=2,n�1Þ�þ

ffiffiffi
3
p

2
½vðZ,nÞ�vðZ�1=2,n�1Þ�, ð3:8Þ

T ðZ,nÞ ¼
1

2
½uðZþ1=2,n�1Þ�uðZ,nÞ�þ

ffiffiffi
3
p

2
½vðZ,nÞ�vðZþ1=2,n�1Þ�: ð3:9Þ

The symmetry conditions (3.7) lead to

SðZ,0Þ ¼
1

2
½uðZ,0Þ�uðZ�1=2,0Þ�þ

ffiffiffi
3
p

2
½vðZ,0ÞþvðZ�1=2,0Þ�, T ðZ,0Þ ¼ SðZþ1=2,0Þ

or

SF ðx,0Þ ¼
1

2
ð1�eix=2ÞuF ðx,0Þþ

ffiffiffi
3
p

2
ð1þeix=2ÞvF ðx,0Þ, T F

ðx,0Þ ¼ SF ðx,0Þe�ix=2: ð3:10Þ

The representation (3.6), then allows SF in (3.10) to be rewritten as

SF
ðx,0Þ ¼

1

2f vðL1Þf vðL2Þ
RT TBðL1,L2ÞC, ð3:11Þ

with

C¼
C1

C2

 !
, R¼

1�eix=2

ið1þeix=2Þ

 !
,

and

T¼
1 0

0
ffiffiffi
3
p

 !
, BðL1,L2Þ ¼

f vðL1Þf vðL2Þ f vðL1Þf vðL2Þ

�f uðL1Þf vðL2Þ �f uðL2Þf vðL1Þ

 !
:

In contrast, if the symmetry relation (3.7) is not used, the Fourier transform with respect to Z can be applied directly to
(3.8), (3.9)

SF
ðx,nÞ ¼

1

2f vðL1Þf vðL2Þ
½C1L

n
1ð1�L

�1
1 eix=2Þ½f vðL1Þf vðL2Þ�i

ffiffiffi
3
p

f uðL1Þf vðL2Þ�

þC2L
n
2ð1�L

�1
2 eix=2Þ½f vðL2Þf vðL1Þ�i

ffiffiffi
3
p

f uðL2Þf vðL1Þ��, ð3:12Þ

T F
ðx,nÞ ¼�

1

2f vðL1Þf vðL2Þ
½C1Ln

1ð1�L
�1
1 e�ix=2Þ½f vðL1Þf vðL2Þþ i

ffiffiffi
3
p

f uðL1Þf vðL2Þ�

þC2L
n
2ð1�L

�1
2 e�ix=2Þ½f vðL2Þf vðL1Þþ i

ffiffiffi
3
p

f uðL2Þf vðL1Þ��, ð3:13Þ

where the formulae (3.6) have been used in the derivation. Formally taking the limit as n-0, we obtain

PF ðxÞ ¼
1

2f vðL1Þf vðL2Þ
½C1ð1�L

�1
1 eix=2Þ½f vðL1Þf vðL2Þ�i

ffiffiffi
3
p

f uðL1Þf vðL2Þ�

þC2ð1�L
�1
2 eix=2Þ½f vðL2Þf vðL1Þ�i

ffiffiffi
3
p

f uðL2Þf vðL1Þ��, ð3:14Þ

QF
ðxÞ ¼ �

1

2f vðL1Þf vðL2Þ
½C1ð1�L�1

1 e�ix=2Þ½f vðL1Þf vðL2Þþ i
ffiffiffi
3
p

f uðL1Þf vðL2Þ�

þC2ð1�L�1
2 e�ix=2Þ½f vðL2Þf vðL1Þþ i

ffiffiffi
3
p

f uðL2Þf vðL1Þ��, ð3:15Þ

The notations PF ðxÞ and QF
ðxÞ are used instead of SF

ðx,0Þ and T F
ðx,0Þ in the above formulae.
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4. The Wiener–Hopf equation along the crack

In this section, we will use the equations of motion for a particle on the upper crack face (n¼0), to derive a Wiener–
Hopf equation. The kernel function of this equation is also obtained and its properties are investigated. This function is
used in (a) Section 5 for analysing the dispersion properties of the lattice and (b) for computing the energy release rate
ratio of the propagating crack in Section 7.

4.1. Dynamic equations along the crack face (n¼0)

Now we consider the equations of motion for particles along n¼0. The equations are similar to those presented in
Section 2.4. However, since particles along the crack face have no bonds corresponding to the vectors �e1 and e0�e1, and
are acted on by external forces G and H (see Fig. 2), this should be taken into account. For convenience, it will be assumed
that these forces have the form GðZÞ ¼fðZÞ and HðZÞ ¼fðZþ1=2Þ, where f is a function to be chosen at a later stage (see
Appendix D).

Ahead of the crack, for particles along n¼0, the elongation of the bonds corresponding to e0, e1, e1�e0 and �e0 are the
same as those for a particle in the intact upper lattice half plane. Also the internal force of the bond in the direction of �e1,
can be written as

MðZ,0Þ ¼ SðZ,0ÞHðZÞ, MF
¼ Sþ , ð4:1Þ

where H is the Heaviside function. Using (3.10) and MF , a similar expression for the internal force in the bond directed
along e0�e1 is obtained, N F

¼ Sþ e�ik=2.
Then, the Fourier transform of the equations of motion for the particles along the line n¼0 are

m

m2

ðeþ ixVÞ2uF ðx,0Þ ¼
1

2
cosðx=2ÞuF ðx,1Þ�f2að1�cosðx=2ÞÞþ1=2guF ðx,0Þ

�
i
ffiffiffi
3
p

2
sinðx=2ÞvF ðx,1Þ�

1

2
ð1�e�ix=2ÞðSþ þfF=m2Þ,

m

m2

ðeþ ixVÞ2vF ðx,0Þ ¼�
i
ffiffiffi
3
p

4
sinðx=2ÞuF ðx,1Þþ

3

4
cosðx=2ÞvF ðx,1Þ�

3

2
vF ðx,0Þ�

ffiffiffi
3
p

2
ð1þe�ix=2ÞðSþ þfF=m2Þ:

In order that the expressions (3.6) fulfill these equations, the system

QF
ðxÞ�PF ðxÞ ¼�ð1�e�ix=2ÞðSþ þfF=m2Þ, QF

ðxÞþPF ðxÞ ¼ ð1þe�ix=2ÞðSþ þfF=m2Þ,

should be satisfied (see (3.1), (3.2), and (3.12)–(3.15)). Using (3.14) and (3.15) in the above left-hand sides leads to

NðL1,L2ÞC¼�L1L2f vðL1Þf vðL2ÞRðSþ þfF=m2Þ,

where the matrix NðL1,L2Þ ¼ ½XijðL1,L2Þ�
2
i,j ¼ 1 has the entries

X11ðL1,L2Þ ¼L2f vðL2Þðf vðL1Þðcosðx=2Þ�L1Þþ
ffiffiffi
3
p

sinðx=2Þf vðL1ÞÞ,

X21ðL1,L2Þ ¼L2f vðL2Þð�
ffiffiffi
3
p

f uðL1Þðcosðx=2Þ�L1Þþ f vðL1Þ sinðx=2ÞÞ,

X12ðL1,L2Þ ¼X11ðL2,L1Þ and X22ðL1,L2Þ ¼X21ðL2,L1Þ:

Therefore

C¼�L1L2f vðL1Þf vðL2Þ½NðL1,L2Þ�
�1RðSþ þfF=m2Þ:

Combining this with (3.11) yields

SF
ðx,0Þ ¼�

L1L2

2 detðNðL1,L2ÞÞ
RTXðL1,L2ÞRðSþ þfF=m2Þ, ð4:2Þ

with

XðL1,L2Þ ¼ TBðL1,L2ÞadjðNðL1,L2ÞÞ,

and

adjðNðL1,L2ÞÞ ¼
X21ðL2,L1Þ �X11ðL2,L1Þ

�X21ðL1,L2Þ X11ðL1,L2Þ

 !
,

detðNðL1,L2ÞÞ ¼X11ðL1,L2ÞX21ðL2,L1Þ�X11ðL2,L1ÞX21ðL1,L2Þ: ð4:3Þ

Since

adjðNðL2,L1ÞÞ ¼�
0 1

1 0

� �
adjðNðL1,L2ÞÞ, BðL2,L1Þ ¼ BðL1,L2Þ

0 1

1 0

� �
,
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the matrix X matrix satisfies the relation

XðL1,L2Þ ¼�XðL2,L1Þ: ð4:4Þ

4.2. The Wiener–Hopf equation

Next we set

SF
ðx,0Þ ¼ Sþ þS�,

where Sþ , S� are functions analytic in the upper and lower half-planes of the complex plane, and as in (4.1),
MF
ðx,0Þ ¼ Sþ , whereas the quantity SF satisfies (4.2). After inserting this into (4.2), we obtain an equation of the form

Lðeþ ixV ,xÞSþ þS� ¼ ð1�Lðeþ ixV ,xÞÞfF=m2: ð4:5Þ

Here,

Lðeþ ixV ,xÞ ¼ 1þ
L1L2

2detðNðL1,L2ÞÞ
RTXðL1,L2ÞR ,

where Lj, j¼ 1,2, are given in (3.4).
We note that due to (4.4) and the antisymmetry of detðNðL1,L2ÞÞ in (4.3) with respect to L1 and L2, that Lðeþ ixV ,xÞ is

symmetric with respect to L1 and L2. An equivalent representation for Lðeþ ixV ,xÞ in terms of z1 and z2 (see (3.4) and (3.5))
is given by

Lðeþ ixV ,xÞ ¼
3rðLn

1ÞrðL
n

2Þðz2�z1Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q ffiffiffiffiffiffiffiffiffiffiffi

z2
2�1

q
rðLn

1ÞFðz2Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q

�rðLn

2ÞFðz1Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

2�1
q , ð4:6Þ

where

rðLÞ ¼
1, 9L9r1,

�1, otherwise,

(

FðzÞ ¼ 3ðcosðx=2Þ�zÞ2þ6a sin2
ðx=2Þð1þcosðx=2ÞÞð1�zÞþ

m

m2

ðeþ ixVÞ2½1�z cosðx=2Þþð1þcosðx=2ÞÞð1�zÞ�:

The representation for Lðeþ ixV ,xÞ in (4.6), contains the stiffness contrast parameter a which is found in the function F.
For the case a¼ 1, (4.6) is similar to (12.47) of Slepyan (2002, Section 12.3.5), with the only difference here being that the
functions rðLn

1Þ, rðLn

2Þ have been included to indicate the change of the branch cuts of the square roots whenever 9L1,2941.
In the derivation of (4.6), from (3.4) we used

Lj ¼ zj�rðLn

j Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

j �1
q

,

together with the fact

1

Lj
¼ zjþrðLn

j Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

j �1
q

, for j¼ 1,2:

4.3. Asymptotics of L1,2

Here, we obtain estimates for the behaviour of the roots of (3.3), in the neighbourhood of zero and infinity, and discuss
their properties.

For the auxiliary functions zj, j¼ 1,2 we have

zj ¼
mðeþ ixVÞ2

3m2

2 cosðx=2Þþð�1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4 sin2

ðx=2Þ

q� �
þOðYlÞ, j¼ 1,2, x-71, ð4:7Þ

where the term in the parenthesis is non-zero for all x. Here, Yl ¼O (1) for most values of x, however for a periodic
sequence of x¼ xl we have this is Yl ¼ Oððeþ ixVÞ�2

Þ.
In the other limit, x-0, we obtain

zj ¼ 1þ
1

24
djx

2
þO x4
	 


, x-0,

ffiffiffiffiffiffiffiffiffiffiffi
z2

j �1
q

¼

ffiffiffi
3
p

x
6

ffiffiffiffi
dj

q
þOð9x93

Þ, j¼ 1,2, ð4:8Þ
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where

dj ¼ 3ð4a�1Þ�16V2
n
þð�1Þj4M0, j¼ 1,2, ð4:9Þ

M0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V4

n
þ3ða�1Þð3a�4V2

n
Þ

q
, ð4:10Þ

and Vn ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffi
m=m2

p
, as above.

Now we consider the behaviour of L1,2 at infinity, we have

Lj ¼
1

2zj
þOð9zj9

�3
Þ, 9x9-1, ð4:11Þ

that is, Lj ¼Oðx�2
Þ as 9x9-1 and here the sign in front of the square root in (3.4) is chosen to maintain the condition

9Lj9r1, j¼1, 2, in this limit.
Near zero

Lj ¼ 17

ffiffiffi
3
p

x
6

ffiffiffiffi
dj

q
þOðx2

Þ, x-þ0: ð4:12Þ

Here, the sign in front of the term linear in x is chosen so that 9L1,29r1 for x-0. In the next section, we analyse the
behaviour of dj, j¼1, 2 in (4.9) for a40 and 0oVnrCRðm=m2Þ

1=2. In particular, we show that dj, j¼1, 2, do not belong on
the negative real axis. If dj, j¼1, 2, is non-negative, then in the above expression the sign ‘‘� ’’ should be used. For a
complex dj, the sign is chosen in such a way that 9Lj9r1:

4.4. The constants d1,2

Here we show that d1,2 do not belong to the negative real axis in the complex plane. The proposition below is proved for
d1 and the result extends to d2 as well.

Proposition 2. For a40 and 0oVnrCRðm=m2Þ
1=2, we have d1 2 C\R�.

Proof. We begin by assuming on the contrary that d1 is negative, which is equivalent to the inequality

3ð4a�1Þ�16V2
n
o4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V4

n
þ3ða�1Þð3a�4V2

n
Þ

q
, ð4:13Þ

with the assumption that the term under the square root in the right-hand side is positive. This gives rise to the cases:
(a)

3ð4a�1Þ�16V2

n
40,

together with

ð3ð4a�1Þ�16V2
n
Þ
2o16ð4V4

n
þ3ða�1Þð3a�4V2

n
ÞÞ

or

(b)
3ð4a�1Þ�16V2
n
o0 and 4V4

n
þ3ða�1Þð3a�4V2

n
Þ40:
The Case (a). One can obtain the inequality

V4
n
�

2aþ1

2
V2

n
þ

3

8
aþ 1

8

� �
o0:

The quadratic function of V2
n
, in the left-hand side, has the zeros

v2
1,2 ¼

3

8
,

1

8
þa,

which for a40, are both positive. Then (4.13) is only valid if V2
n
2 ðv2

1,v2
2Þ for aZ1=4 or V2

n
2 ðv2

2,v2
1Þ for ao1=4. We now

show V2
n

lies outside these intervals for a40.
By Proposition 1,

maxfV2
n
g ¼ gðaÞrv2

1, when aZ1=4, ð4:14Þ

where gðaÞ is given in (2.2).
For ao1=4, owing again to Proposition 1,

dg

da ðaÞo
3

4
, for a40, gð0Þo

1

8
, and gð1=4Þ ¼

3

8
1�

ffiffiffi
3
p

3

 !
o

3

8
:
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Thus

maxfV2
n
g ¼ gðaÞov2

2, when 0oao1=4:

This inequality with (4.14) shows that (4.13) is not valid for Vn 2 ð0,CR

ffiffiffiffiffiffiffiffiffiffiffiffi
m=m2

p
� and a40 for case (a) above.

The Case (b). The second inequality of this case can be rewritten as

V4
n
þ3ð1�aÞV2

n
�

9að1�aÞ
4

40, ð4:15Þ

where now the quadratic function on the left-hand side has zeros

w2
7 ¼

3

2
½a�17

ffiffiffiffiffiffiffiffiffiffi
1�a
p

�:

When aZ1 the inequality (4.15) is satisfied (since the zeros of the left-hand side are complex), and it remains to show
that the inequalities

V2
n
r

C2
Rm

m2

and V2
n
4

3ð4a�1Þ

16
, ð4:16Þ

do not hold. These lead to

3ð4a�1Þ

16
ogðaÞ, or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2þða�1Þ2

q
o

7

4
�a,

where the definition of gðaÞ in (2.2) has been used. From the above inequalities, we have a contradiction to (4.16) for
aZ7=4. Assume 1rao7=4, then the last inequality leads to

a2þ
1

2
a�11

16
o0:

This is valid for a 2 ð0,ð�1=2þ
ffiffiffi
3
p
Þ=2Þ. Hence (4.13) does not hold.

When ao1, for (4.15) to be satisfied we put

V2
n
4w2

þ ¼
3

2
½a�1þ

ffiffiffiffiffiffiffiffiffiffi
1�a
p

�,

where

V2
n
r

C2
Rm

m2

, and V2
n
4

3ð4a�1Þ

16
:

Here, as before, the last two inequalities are valid if 0oaoð�1=2þ
ffiffiffi
3
p
Þ=2. It remains to check that

V2
n
4w2

þ ¼
3

2
½a�1þ

ffiffiffiffiffiffiffiffiffiffi
1�a
p

� and V2
n
r

C2
Rm

m2

: ð4:17Þ

Both of these yield the inequality

a2 a2þa�7

4

� �
40:

This is valid for a4�1=2þ
ffiffiffi
2
p

and, since we have assumed that 0oao ð�1=2þ
ffiffiffi
3
p
Þ=2, we have a contradiction to (4.17).

Therefore, (4.13) is not valid for Vn 2 ð0,CRðm=m2Þ
1=2
� and a40 in case ðbÞ above. &

4.4.1. Asymptotes of Lðeþ ixV ,xÞ
Here, we obtain the asymptotics of Lðeþ ixV ,xÞ for x-0.

Proposition 3. For x-0, we have

Lðeþ ixV ,xÞ � L0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðeþ ixÞðe�ixÞ
p þOð9x9Þ, e-þ0, ð4:18Þ

where

L0 ¼
3

ffiffiffiffiffiffiffiffiffiffi
d1d2

p
ðB2

ffiffiffiffiffi
d1

p
þB1

ffiffiffiffiffi
d2

p
Þ

2
ffiffiffi
3
p
ð3�8V2

n
Þð2V2

n
�3aÞðV4

n
� 1

2 ð2aþ1ÞV2
n
þ 3a

8 Þ
, ð4:19Þ

and

Bj ¼
1

2

1

6
ðV2

n
�ð�1ÞjM0Þ

2
�V2

n

3V2
n

2
þ1

 !
�

3a
2

a�1

2
�2V2

n

� �" #
, j¼ 1,2: ð4:20Þ
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Proof. Using (4.8), for x-0

z2�z1 ¼
M0x

2

3
þOðx4

Þ, ð4:21Þ

and

FðzjÞ ¼ Bjx
4
þOðx6

Þ, j¼ 1,2,

together with (4.6), (4.9), (4.10) and (4.21) gives (4.18) where

L0 ¼
M0

ffiffiffiffiffiffiffiffiffiffi
d1d2

p
2
ffiffiffi
3
p
ðB2

ffiffiffiffiffi
d1

p
�B1

ffiffiffiffiffi
d2

p
Þ
:

Multiplying the numerator and the denominator by B2

ffiffiffiffiffi
d1

p
þB1

ffiffiffiffiffi
d2

p
, we arrive at (4.19). &

It is shown in Appendix A that L0 is positive for a40, and V rCR.

5. Roots and poles of the kernel function L

Having obtained the expression for the kernel function L, we can now derive expressions for the dispersion relations of
the inhomogeneous lattice. We also show that these relations can be used to predict the behaviour of the argument of the
function L, which is needed in the computation of the energy release rate ratio for the propagating crack in Section 7.
Let m¼1,

p¼ 3rðLn

1ÞrðL
n

2Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q ffiffiffiffiffiffiffiffiffiffiffi

z2
2�1

q
and

q¼
rðLn

1ÞFðz2Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q

�rðLn

2ÞFðz1Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

2�1
q

z2�z1
, ð5:1Þ

so that in (4.6)

L¼
p

q
:

We now investigate the zeros of p and q of the above expression. This is carried out by setting e¼ 0 and O¼ xV , then
solving the equations p¼0 and q¼0 for O.

The roots of the equation p¼0 are given by

OðNÞ1 ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
6m2

p
9cosðx=4Þ9, ð5:2Þ

OðNÞ2 ðxÞ ¼ ½2m2 sin2
ðx=4Þþ4m1 sin2

ðx=2Þ�1=2, ð5:3Þ

OðNÞ3 ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
6m2

p
9sinðx=4Þ9, ð5:4Þ

OðNÞ4 ðxÞ ¼ ½2m2 cos2ðx=4Þþ4m1 sin2
ðx=2Þ�1=2: ð5:5Þ

Next we obtain the roots of the equation q¼0. This equation, after multiplication by

rðLn

2ÞFðz2Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q

þrðLn

1ÞFðz1Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

2�1
q

,

leads to

Fðz2Þ
2
ðz2

1�1Þ�Fðz1Þ
2
ðz2

2�1Þ

ðz2�z1Þ
¼ 0: ð5:6Þ

Solutions of this extended equation are then (5.4), (5.5) and

OðDÞ1 ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1þm2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

1þðm1�m2Þ
2

qr
9sinðx=2Þ9, ð5:7Þ

OðDÞ2 ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
6m1

p
9sinðx=2Þ9, ð5:8Þ

OðDÞ3 ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1þm2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

1þðm1�m2Þ
2

qr
9sinðx=2Þ9, ð5:9Þ

and it remains to determine which of the roots of (5.6) are those of (5.1). Each dispersion relation satisfies Oðxþ4pÞ ¼OðxÞ.
Also note that for m¼1, limx-þ0 dOðDÞ1 ðxÞ=dx coincides with (2.1).

Functions (5.4) and (5.5), which are also roots of Eq. (5.1), and are in fact removable singularities of L.



(a)

(b)

(c)

Fig. 3. For m1 ¼ m2 ¼ 1, a¼ 1, figure (a) shows the dispersion relations (5.2)–(5.5) and (5.7)–(5.9), along with the ray O¼ xV for V¼0.4504. The roots of L

are given by the solid curves, poles are shown by curves with the small dashes and the removable singularities are given by the dashed curves. The

regions given in (5.10) and (5.11) where OðDÞ2 and OðDÞ3 are roots of q¼0 are marked by the dashed and solid vertical lines. For comparison, we give the plot

of (b) argðLÞ, and (c) the imaginary part of the factor z2�z1 contained in the representation (4.6) of L.
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The choice of a and x determines when (5.7)–(5.9) are solutions of q¼0. Here, we present the results for the case a¼ 1
and give the description of the behaviour of the argument of L. The function OðDÞ1 is a solution of (5.1). When

0:6667rx=pr1:3333 and 2:6667rx=pr3:3333, ð5:10Þ

we have OðDÞ2 is a solution of q¼0. For x=p satisfying

0:7614rx=pr1:2386 and 2:7614rx=pr3:2386, ð5:11Þ

OðDÞ3 is a solution of q¼0. The inequalities (5.10) and (5.11) are discussed in Appendix B.
In Fig. 3(a) we plot the dispersion relations (5.2)–(5.5) and (5.7)–(5.9), as functions of the wavenumber x, for

m1 ¼ m2 ¼ 1. Included in this figure is the ray O¼ Vx corresponding to the speed V¼0.4504. By comparison with the
diagram of argðLÞ in Fig. 3(b), we see each intersection of the ray xV with the dispersion curves corresponds to a jump in
argðLÞ.

At approximately x¼ p, we have an additional jump in argðLÞ. This is a result of the behaviour of the factor z2�z1

contained in L (see (3.4) and (4.6)). This factor, as shown in Fig. 3(c), is either real or purely imaginary. As we approach
x¼ p, this factor moves from the negative imaginary axis in the complex plane, to the positive real axis (note that z2�z1 is
the radical function of (3.5) where the positive square root is taken). The corresponding effect is a jump in argðLÞ of p=2.

For a lower crack speed, V¼0.2140, we present the dispersion diagram along with the ray xV in Fig. 4(a). On the
corresponding picture for argðLÞ in Fig. 4(b), we see this function jumps when the ray intersects the dispersion curves.
In particular, the ray xV intersects the curve corresponding to OðDÞ3 in the second region of (5.11), which again results in a
change in the value of argðLÞ. Also, in Fig. 4(c), at approximately, x¼ 3:4p, we observe that the factor z2�z1 moves from the
positive real axis to the positive imaginary axis. Again, the result we observe is a jump of p=2 in argðLÞ at this point.

Finally, for m1 ¼ 1 and m2 ¼ 10, ða¼ 0:1Þ, V¼0.7998 we present the dispersion relations, the plot of argðLÞ and the
imaginary part of the factor z2�z1, in Fig. 5(a)–(c). Comparing with Fig. 3, we see the distance between the dispersion
curves along with their height has increased, which can lead to greater absolute value of the area under the curve traced by
the argument of L.

6. Solution of the Wiener–Hopf equation

6.1. Factorisation of the Wiener–Hopf equation (4.5)

Here, we use the solution presented in Slepyan (2002) and extend it to the situation when the bonds within the lattice
have a contrast in stiffness in the principal lattice directions. We define the class J as the set of complex valued functions



Fig. 4. For m1 ¼m2 ¼ 1, a¼ 1, in figure (a) we show the dispersion relations (5.2)–(5.5) and (5.7)–(5.9), along with the ray O¼ xV for V¼0.2140. The

description of the curves in the dispersion diagram is the same as in Fig. 3. We again give the plot of (b) argðLÞ and (c) the function Imðz2�z1Þ, for the

purpose of comparison.

Fig. 5. (a) For m1 ¼ 1, m2 ¼ 10, a¼ 0:1, we plot the dispersion relations (5.2)–(5.5) and (5.7)–(5.9), along with the ray O¼ xV for V¼0.7998.

The description of the dispersion curves is given in Fig. 3. The plots of (b) argðLÞ and (c) Imðz2�z1Þ are also presented.
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f : R-C satisfying

Reðf ðxÞÞ ¼ Reðf ð�xÞÞ, Im ðf ðxÞÞ ¼ �Imðf ð�xÞÞ:

For e40, the kernel L 2 J and satisfies

IndðLðeþ ixV ,xÞÞ ¼ lim
x-1

1

2p ½argðLðeþ ixV ,xÞÞ�argðLðe�ixV ,�xÞÞ� ¼ 0,

argðLðeþ ixV ,xÞÞ ¼ �argðLðe�ixV ,�xÞÞ and lim
x-71

Lðeþ ixV ,xÞ ¼ 1, ð6:1Þ
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where IndðLðeþ ixV ,xÞÞ represents the number of times the contour traced by Lðeþ ixV ,xÞ in the complex plane winds
around the origin. The proofs of these properties are given in Appendix C.

Then, the above conditions allow Lðeþ ixV ,xÞ to be factorised in the form

L¼ Lþ L�,

where

L7 ðeþ ixV ,xÞ ¼ exp 7
1

2pi

Z 1
�1

ln Lðeþ isV ,sÞ

s�x
ds

� �
, ð6:2Þ

with e-þ0, Im x40 for Lþ and Im xo0 for L�.
The function Lþ ðL�Þ is an analytic function of x in the upper (lower) half of the complex plane. The introduction of the

small positive parameter e into L, shifts its zeros and poles (located on the real axis) into the upper or lower half of the
complex plane. Following this shift, the dispersion curves, discussed in Section 5, can be then used to identify in which half
plane each root and pole is located (see Slepyan, 2002, Chapter 2).

Suppose xz and xp are wavenumbers which correspond to the intersection of O¼ xV with the zeros and poles of L,
respectively (see (5.2)–(5.5) and (5.7)–(5.9)), on the dispersion diagram. Also at these intersection points, let V oVg , where
Vg ¼ dO=dx is the group velocity. Then, in this case xz and xp will be located in the lower half plane after the introduction of
e in L. Similarly, if V 4Vg then xz and xp are shifted into the upper half of the complex plane (see Slepyan, 2002, Section
3.3.3). It is noted that the case V ¼ Vg is not considered here.

From the definition (6.2), it follows that Lþ ðL�Þ contains all singular and zero points of L which are located in the lower
(upper) half of the complex plane for e40.

Using (6.1), Eq. (4.5) can then be written as

LþSþ þ
S�
L�
¼

1

L�
�Lþ

� �
fF

m2

, ð6:3Þ

which is similar to (12.58) of Slepyan (2002).
Here, the left-hand side of (6.3) is the sum of two analytic functions, one analytic in the upper half of the complex plane,

the other analytic in the lower half of the complex plane and in order to solve the problem, we must separate the terms in
the right-hand side in the same way. This is carried out by introducing the load f in such a way that it allows for this
additive split. In Appendix D, an outline for this procedure is presented for the case when the load f is chosen so that the
right-hand side can be represented as a linear combination of Dirac delta functions.

In what follows, we will consider the situation when the load applied along the crack faces generates a term of the form
CdðxÞ, in the right-hand side of (6.3) (see Appendix D for the derivation). Here, C is a constant which represents the
intensity of the load. Then Sþ and S� have the form

Sþ ¼
C

m2Lþ ðeþ ixV ,xÞðe�ixÞ
, S� ¼

L�ðeþ ixV ,xÞC
m2ðeþ ixÞ

, e-þ0: ð6:4Þ
7. Energy release rate ratio

Here, we investigate the dependence of energy release rate ratio (Slepyan, 2002) on the stiffness contrast parameter a.
This is defined as

G0

G
¼ exp

2

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
, e-þ0, ð7:1Þ

where G0 is the local energy release rate for the semi-infinite crack propagating through the lattice with speed V for sub-
critical surface wave speed regime and G is global energy release rate for the crack propagating through the corresponding
homogenised medium. This ratio describes the dissipation of energy created by breaking bonds at the crack front.

Next we show (7.1) can be obtained from (6.4). However, we note that the derivation of (7.1) does not depend on the
solution of the Wiener–Hopf equation in the previous section. The definitions of G and G0 follow Slepyan (2002,
Chapter 12) as the energy release rates globally and locally respectively. In particular, as in Slepyan (2002), G can be
defined as a limit

G¼ lim
k-0

k2m2S�ð�ikÞSþ ðikÞ,

and the local energy release rate is given as

G0 ¼ lim
k-þ1

k2m2S�ð�ikÞSþ ðikÞ:
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The global energy release rate G follows from the asymptotes of S7 as x-0. The asymptotes of L7 are

Lþ ðeþ ixV ,xÞ �
ffiffiffiffiffi
L0

p
ffiffiffiffiffiffiffiffiffiffiffi
e�ix

p exp
1

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
,

L�ðeþ ixV ,xÞ �
ffiffiffiffiffi
L0

p
ffiffiffiffiffiffiffiffiffiffiffi
eþ ix

p exp �
1

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
, ð7:2Þ

for e-þ0, and their derivations are found in Appendix E.
Then, owing to (6.4) and (7.2),

Sþ �
C

m2

ffiffiffiffiffi
L0

p ffiffiffiffiffiffiffiffiffiffiffi
e�ix

p exp �
1

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
, ð7:3Þ

S� �
ffiffiffiffiffi
L0

p
C

m2ðeþ ixÞ3=2
exp �

1

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
,

where x-0, e-þ0, and so

G¼
C2

m2

exp �
2

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
, e-þ0: ð7:4Þ

The local energy release rate is then given by the asymptotes of S7 when x-1. As a result of (6.1) and (6.2), L7-1 as
x-1. In the same limit we have

Sþ �
C

m2ðe�ixÞ
, S� �

C
m2ðeþ ixÞ

, x-1, e-þ0,

and so m2G0 ¼ C2. Then this and (7.4) imply (7.1).

7.1. Sensitivity of the energy release rate ratio to the stiffness contrast

In this section, we set m¼ m1 ¼ 1, so that a¼ 1=m2, and we investigate the behaviour of the energy release rate ratio
(7.1) as a function of crack speed, when the stiffness ratio is increased (which corresponds to the decrease in the stiffness
of the inclined bars). The critical crack speed CRðaÞ, in this example, has the form (see (2.1))

CRðaÞ9m ¼ 1,m1 ¼ 1 ¼
1

2a1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2þða�1Þ2

qr
: ð7:5Þ

The critical surface wave speed CRðaÞ is decreasing monotonically as a increases. The upper bound of this function is
CRð0Þ ¼

ffiffiffi
3
p

=2 (when the inclined bars are rigid), and for a tending to infinity (the inclined bars are becoming much more
softer compared to the horizontal bars) the speed CRðaÞ tends to zero. In Fig. 6(a), we plot the energy release rate ratio as a
function of normalised crack speed V=CRðaÞ, for a¼ 0:05, 0.1, 0.2, 1, 100. The crack, for low speeds, does not propagate
steadily. The intrinsic feature of the model discussed here is that the crack propagates uniformly with speed V. If this
assumption is not satisfied then the model does not describe accurately the propagation of the crack, which is depicted by
the non-smooth part of the curves on Fig. 6(a), e.g. for approximately V=CRðaÞo0:5 when a¼ 1. Formally, the oscillations
of G0=G for low values of V=CR in Fig. 7, are caused by the highly oscillatory behaviour of argðLÞ for low crack speeds, in
(7.1), as observed in Section 5. From Fig. 6(a), we see the percentage of speeds less then CRðaÞ, where this region is located,
is decreasing as a is increasing. The proposed model does not describe a true physical behaviour of the lattice system with
a crack for low values of V=CR.

Contained in Fig. 6(b), is the plot of the energy release rate ratio against the crack speed which has been normalised by
CRð0Þ ¼

ffiffiffi
3
p

=2. For aZ0:05 the ratio G0=G tends to zero as we approach critical speed CRðaÞ predicted by (7.5). For a40:1, in the
region of instability, the ratio G0=G increases until it reaches a speed where there is a global maximum. For speeds greater than
this, we observe the ratio follows a smooth curve as it decreases to zero at the critical surface wave speed (7.5). In this region, this
behaviour shows that the model describes the steady propagation of the semi-infinite crack through the inhomogeneous lattice.

In Mishuris et al. (2009b), the dynamic problem for the propagation of a crack situated in a square-cell lattice, whose
rows contain particles of contrasting mass, is discussed. The sensitivity to the contrast in mass, of the ratio of the local
energy release rate G0 (for the lattice) to the global energy release rate G (for the corresponding homogenised material)
was also investigated. It was seen the values of G0=G, for high crack speeds, increased monotonically as the contrast in
mass was reduced. Here, as shown in Figs. 6(a), (b) and 7, we do not have any monotonicity in the behaviour of G0=G for
different a. For example, in Fig. 6(a), the curve for a¼ 0:2 intersects those for a¼ 1,100 at approximately V=CRðaÞ ¼ 0:83
(where we are in the region of stability for all these curves). For speeds higher than this value, the ratio of G0=G for a¼ 0:2
is greater than that for a¼ 1 and a¼ 100. Another example of this can be seen for the curve corresponding to a¼ 0:1.

It was also observed in Mishuris et al. (2009b), for low crack speeds corresponding to the instability region of the
model, the values of G0=G where not monotonic as a function of the mass contrast parameter. A similar feature is also
observed here for low crack speeds as the stiffness contrast parameter a is varied. In Fig. 7, we plot the energy release rate
ratio for a¼ 0:9,1 and 1.1. For speeds V=CRðaÞo0:5 (the region of instability), there exists regions where all curves are



Fig. 6. (a) The energy release rate ratio as a function of the normalised speed V=CRðaÞ, based on formula (7.1). (b) The ratio G0=G as a function of the crack

speed normalised by the supremum of CRðaÞ over a40 ðCRð0Þ ¼
ffiffiffi
3
p

=2Þ. We show the behaviour of this ratio for the stiffness contrasts a¼ 0:05,0:1,0:2,1,

and 100.

Fig. 7. The energy release rate ratio as a function of the normalised speed V=CRðaÞ, computed using formula (7.1), for the values a¼ 0:9,1 and 1.1.
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intersecting one another and overlapping. For instance, when 0:35oV=CRðaÞo0:5, again there is no monotonicity in the
behaviour of G0=G as a varies. We note that the critical speed in the scalar case (Mishuris et al., 2009b) was a material
constant and did not depend on the contrast ratio.

8. Stress intensity factor in the homogenisation approximation

In this section, we derive the expression for the Mode I stress intensity factor for the semi-infinite crack in the case
when the load f applied along the crack faces generates the term CdðxÞ in the right-hand side of (6.3), with C being the load
intensity. The solution of this problem is given in (6.4).

Using the fact that the energy required to break the crack front bond m2G0 ¼ C2 (see the previous section), we compute
the inverse Fourier transform of Sþ in (7.3), so that to leading order

SðZÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G0

m2L0pZ

s
exp �

1

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
, for Z40, ð8:1Þ

which depends on a and here L0 is given in Proposition 3. Here, the expression m2SðZÞ represents the tensile force in the
inclined bonds ahead of the crack. Let the normal traction ahead of the crack be s, then

s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2G0

L0pZ

s
exp �

1

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
: ð8:2Þ
Fig. 8. The normalised stress intensity factor KI=
ffiffiffiffiffiffi
G0

p
as a function of (a) the normalised crack speed V=CRðaÞ and (b) the normalised crack speed V=CRð0Þ,

based on formula (8.4), for a¼ 0:05, 0.1, 0.2, 1, 3. Here CRð0Þ ¼
ffiffiffi
3
p

=2 is the supremum of (7.5) for a40.
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The Mode I stress intensity factor KI, in the far-field is defined by the formula

KI ¼ lim
Z-þ0

ffiffiffiffiffiffiffiffiffi
2pZ

p
s: ð8:3Þ

On comparison of (8.2) and (8.3), we have the stress intensity factor KI is

KIðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6m2G0

L0

s
exp �

1

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
: ð8:4Þ

Now, setting m1 ¼ 1 and allowing m2 to vary, we investigate the behaviour of KI as a function of V and a. The expression
for KI=

ffiffiffiffiffiffi
G0

p
is given as a function of the normalised speed V=CRðaÞ in Fig. 8(a) and as a function of the normalised speed

V=CRð0Þ in Fig. 8(b) for a¼ 0:05,0:1,0:2,1,3 (where V rCRðaÞ, see (7.5)).
As discussed in the previous section, at low speeds the model presented here does not describe the propagation of the

crack through the inhomogeneous lattice accurately. This is due to the highly oscillatory behaviour of the argument of L

and it leads to regions of instability, represented by the non-smooth behaviour in G0=G for low speeds as seen in Fig. 6.
Since the expression KI=

ffiffiffiffiffiffi
G0

p
contains the ratio

ffiffiffiffiffiffiffiffiffiffiffi
G=G0

p
(see (7.1) and (8.4)), we also see a similar behaviour in KI=

ffiffiffiffiffiffi
G0

p
in

Fig. 8(a) and (b). For those speeds in this unstable region there is little physical significance of the results presented in the
figures below. As we increase the speed of the crack, we leave the region of instability, and the stress intensity factor
becomes a smooth function of the crack speed, and tends to a finite value for V tending to the critical surface wave speed
CRðaÞ in (7.5), as shown in Fig. 8(a). For ao1, in the vicinity of CRðaÞ, KI is a monotonically decreasing function for
increasing V. When aZ1, outside the instability region, KI passes through a global minimum before the converging to a
finite value at CRðaÞ. From the figure, we can see that overall the behaviour of the stress intensity factor is increasing as we
decrease the stiffness contrast a.

9. Conclusions

The paper has brought together analytical insight on a propagating semi-infinite fault in an elastic lattice with the
computational experiments and physical interpretation of the fields in such a lattice structure. One of the important issues
discussed here is the crack stability for different regimes of the crack speed and different values of elastic parameters of
the anisotropic lattice.

Although it appears that the analytical solution has a serious limitation due to the assumption of the steady crack
propagation, it has been shown in Mishuris et al. (2009a) that in the non-steady regime the averaging procedure appears
to be viable. In this case, the averaged solution follows the prediction of the linear model constructed for the case of the
steady crack propagation through the lattice.

It is also noted that the model predicts a low-speed unsteady regime, consistent with the results obtained by other
approaches (see, for example, Marder and Gross, 1995), for an accelerating crack at the initial stage (low speed) of the
crack advance. Although the model formally shows oscillations of the energy release rate ratio in this regime, it is not
designed to describe a true physical behaviour of a lattice system with a crack for low values of the crack speed. Hence we
do not associate any particular physical effects with these oscillations and simply refer to such a region as the region of
instability, where the crack is likely to exhibit a transient behaviour.
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Appendix A. The sign of L0

In this section we show that for V rCR and a40 the constant L0 in (4.19) of Proposition 3, Section 4, is positive.
Note that by Proposition 1, for V2

n
rC2

Rm=m2

3�8V2
n
40, 2V2

n
�3ao0 ðA:1Þ

and

V4
n
�

1

2
ð2aþ1ÞV2

n
þ

3a
8

40: ðA:2Þ

Also, owing to (4.9)

ffiffiffiffiffiffiffiffiffiffi
d1d2

p
¼ 8

ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V4

n
�

2aþ1

2
V2

n
þ

3

8
aþ 1

8

� �s
40, ðA:3Þ
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since here the quadratic function of V2
n
, under the square root, was shown in the proof of Proposition 2 to be positive for

V2
n
rC2

Rm=m2.

Proposition 4. For a40, V2
n
rC2

Rm=m2 the constant L0 in (4.19) is positive.

Proof. Part 1. Consider the cases when (a) aZ1, 0oV2
n
rC2

Rm=m2 or (b) �1=2þ
ffiffiffi
2
p

rar1 so that

3

2
½a�1þ

ffiffiffiffiffiffiffiffiffiffi
1�a
p

�rV2
n
rC2

Rm=m2.

For the parameter values in both (a) and (b), M0 defined in (4.10) is nonnegative.
We show that B1 in (4.20) is negative, which implies B2 is also negative. The inequality B1o0 gives

2V4
n
�3ðaþ1ÞV2

n
þ

9

4
a4V2

n
M0: ðA:4Þ

Here, this is valid for

V2
n
o

3ðaþ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ1
p

Þ

4
,

which is the case, since

C2
Rm

m2

¼
2aþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2þða�1Þ2

q
4

o
3ðaþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ1
p

Þ

4
for a40:

Indeed, the above provides us with

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2þða�1Þ2

q
oaþ2, ðA:5Þ

and the left-hand side is positive as a result of

9ða2þ1Þ43a2þða�1Þ2:

Thus from (A.5) we have

ða2þ1Þð3a2þða�1Þ2Þ�ð2a2�aþ1Þ2 ¼ 2a340 for a40:

Then (A.4) leads to

3

16
ð8V2

n
�3Þð4V2

n
�3aÞ2o0,

if V2
n
o3=8, and this holds by Proposition 1. Therefore Bjo0, for j¼1, 2. This together with (A.1)–(A.3) shows L040. &

Part 2. Consider the cases when (c) 0oao�1=2þ
ffiffiffi
2
p

, 0oV2
n
rC2

Rm=m2 or (d) �1=2þ
ffiffiffi
2
p

rar1, 0oV2
n
r

3

2
½a�1þ

ffiffiffiffiffiffiffiffiffiffi
1�a
p

�.
For the parameter values in cases (c) and (d), M0 in (4.10) is purely imaginary and can be written as

M0 ¼ iR0, R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1�aÞð3a�4V2

n
Þ�4V4

n

q
, ðA:6Þ

where according to the proof of Proposition 2, R2
040 since V2

n
rC2

Rm=m2. Then

d2 ¼ d1 and B2 ¼ B1 ,

and from (4.19)

L0 ¼

ffiffiffi
3
p

9d19ReðB1

ffiffiffiffiffi
d1

p
Þ

ð328V2
n
Þð2V2

n
�3aÞðV4

n
� 1

2 ð2aþ1ÞV2
n
þ 3a

8 Þ
:

By (A.1)–(A.3) it remains to show that ReðB1

ffiffiffiffiffi
d1

p
Þ is negative. We have

ReðB1

ffiffiffiffiffi
d1

p
Þ ¼ ReðB1Þ Reð

ffiffiffiffiffi
d1

p
Þþ ImðB1Þ Imð

ffiffiffiffiffi
d1

p
Þ,

with

ReðB1Þ ¼ �
1

3
V4

n
þ
aþ1

2
V2

n
�

3

8
a, ImðB1Þ ¼

1

6
V2

n
R040: ðA:7Þ

Note that due to (A.6) and (4.9), �p=2oargð
ffiffiffiffiffi
d1

p
Þo0, therefore

Reð
ffiffiffiffiffi
d1

p
Þ40, Imð

ffiffiffiffiffi
d1

p
Þo0: ðA:8Þ

The roots of ReðB1Þ, which is treated as a quadratic function of V2
n
, are

v2
7 ¼

3

4
½aþ17

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ1

p
�40 for a40:
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Considering case (d), we have

V2
n
ov2

� for 3=4oar1,

and then ReðB1Þo0. This with (A.7), (A.8) implies ReðB1

ffiffiffiffiffi
d1

p
Þ is negative and part (d) is proved.

Returning to part (c), for ReðB1Þo0 we require

2aþ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2þða�1Þ2

q
4

ov2
�,

which was shown to be valid for a40 in the proof of Proposition 2, Section 4. Therefore, the proof is complete. &

Appendix B. Poles of L

Here, for m1 ¼ m2 ¼ 1, we verify the inequalities (5.10) and (5.11) hold, which indicate when the functions (5.8) and (5.9)
are solutions of (5.1), respectively.

For x 2 ½0,4p�, signfrðLn

1Þ=rðLn

2Þg ¼ 1 when V ¼ 7OðDÞ2 =x. By direct substitution of (5.8) into (5.1) we obtain

q9V ¼ 7OðDÞ
2
=x ¼

3

2
irðLn

1Þ sin2
ðx=2Þ9tanðx=2Þ994 cos2ðx=2Þ�19fT1ðxÞ�T2ðxÞg, ðB:1Þ

where

TjðxÞ ¼ signf2ð1þð�1Þj signfcosðx=2ÞgÞ cos2ðx=2Þ�1g, j¼ 1,2:

The factor in front of the curly braces in (B.1), is zero when x¼ 0, 2
3p, 4

3p,2p, 8
3p, 10

3 p, 4p, and is singular at x¼ p and 3p.
We now show that (B.1) is zero in the neighbourhood of these poles, by solving the equation

T1ðxÞ�T2ðxÞ ¼ 0:

For x¼ p,3p it is clear this equation is satisfied. When xap,3p, we are left to determine when the inequality

1�4 cos2ðx=2Þ40

is satisfied. This occurs for x 2 ½23p, 4
3p� [ ½

8
3p, 10

3 p�. The above is confirmed in Fig. 9.
Next, insertion of (5.9) into (5.1) yields

q9V ¼ 7OðDÞ
3
=x ¼

i
ffiffiffi
3
p

sin2
ðx=2Þ9sinðx=2Þ9ð2 cosðx=2Þ�1þ

ffiffiffi
3
p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p
�2 sin2

ðx=2Þ
q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos2ðx=2Þþ

ffiffiffi
3
pq frðLn

1ÞþrðLn

2Þg: ðB:2Þ

The factor outside the curly braces in (B.2), for x 2 ½0,4p�, has the roots x¼ 0,0:7614p,1:2386p, 2p, 2:7614p, 3:283p and 4p.
We must have signfrðLn

1Þ=rðLn

2Þg ¼ �1 when V ¼ 7OðDÞ3 =x. Fig. 10, shows the plot of signfrðLn

1Þ=rðLn

2Þg in this case, and we
see that this condition holds provided x satisfies the inequalities of (5.11).

Appendix C. Asymptotic properties of L

We now state and prove some properties of the kernel function L, which are used in the analysis of the Wiener–Hopf
equation (4.5), in Section 6.
Fig. 9. The plot of the absolute value of q in (B.1) as a function of the normalised wave number, when V ¼ 7OðDÞ2 =x.



Fig. 10. The sign of the ratio of rðLn

1Þ to rðLn

2Þ as a function of x=p, when V ¼ 7OðDÞ3 =x.
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Lemma 1. Lðeþ ixV ,xÞ-1 as 9x9-1.

Proof. According to (4.11), for 9x9-1, we have

Ln

j ¼
1

2zj
þOð9zj9

�3
Þ, and rðLn

j Þ ¼ 1, j¼ 1,2,

ffiffiffiffiffiffiffiffiffiffiffi
z2

j �1
q

¼ zjþOð9x9�2
Þ, ðC:1Þ

FðzjÞ ¼ 3z2
j �

m

m2

ðeþ ixVÞ2zj½2 cosðx=2Þþ1�þOð9x92
Þ:

Since zj ¼Oð9x92
Þ for 9x9-1, then

Fðz2Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q

�Fðz1Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

2�1
q

¼ 3z1z2ðz2�z1ÞþOð9x94
Þ,

3ðz2�z1Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q ffiffiffiffiffiffiffiffiffiffiffi

z2
2�1

q
¼ 3z1z2ðz2�z1ÞþOð9x92

Þ:

The leading order term in both of the above estimates is Oð9x96
Þ for 9x9-1, therefore

Lðeþ ixV ,xÞ ¼ 1þOð9x9�2
Þ, 9x9-1: &

Next we state

Lemma 2. For the product of two complex functions f ðxÞ, gðxÞ 2 J , we have ðfgÞðxÞ 2 J .

This leads to

Lemma 3. For x 2 R, e40, we have Lðeþ ixV ,xÞ 2 J .

Proof. The term

m

m2

ðe2�x2V2
þ2ixeVÞ 2 J ,

since it has an even real part and odd imaginary part with respect to x. This together with Lemma 2 and (3.5) shows that
zj 2 J , j¼1,2. and hence, after a second application of Lemma 2 with (4.6) we complete the proof.

Now we consider the index of the function Lðeþ ixV ,xÞ which defined by

IndðLðeþ ixV ,xÞÞ ¼ lim
x-1

1

2p ½argðLðeþ ixV ,xÞÞ�argðLðe�ixV ,�xÞÞ�: ðC:2Þ
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This quantity can also be interpreted as the number of times the path traced by L in the complex plane for x 2 ð�1,1Þ
winds around the origin. We have

Lemma 4. For e40, we have IndðLðeþ ixV ,xÞÞ ¼ 0.

Proof. According to Section 6, if x¼ xn represents a root or a pole of L such that V oVg ðV 4VgÞ, then the regularisation
parameter e shifts this root or pole into lower (upper) half of the complex plane. Correspondingly, x¼�xn is then a root or
a pole of L such that V 4Vg (V oVg) and this will be located in the upper (lower) half of the complex plane after the
regularisation of L. Therefore, Lðeþ ixV ,xÞ has an equal number of roots in the upper and lower half planes and an equal
number of poles in the upper and lower half planes, and these numbers are independent of e. Hence it is sufficient to show
that for large e, IndðLðeþ ixV ,xÞÞ ¼ 0.

First assume x, eb1, so that 9eþ ixV9b1, then

zj ¼Oðe2þx2V2
Þ, Ln

j ¼
1

2zj
þO

1

ðe2þx2V2
Þ
3

 !
,

and so

rðLn

j Þ ¼ 1, 3ðz2�z1Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q ffiffiffiffiffiffiffiffiffiffiffi

z2
2�1

q
¼ 3z1z2ðz2�z1ÞþOðe2þx2V2

Þ,

and

Fðz2Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

1�1
q

�Fðz1Þ

ffiffiffiffiffiffiffiffiffiffiffi
z2

2�1
q

¼ 3z1z2ðz2�z1Þ�
m

m2

ðeþ ixVÞ2ðz2�z1Þð2þcosðx=2ÞÞþOðe2þx2V2
Þ:

Thus, from (4.6),

Lðeþ ixV ,xÞ ¼ 1þ
mðeþ ixVÞ2½2þcosðx=2Þ�

3m2z1z2
þO

1

ðe2þx2V2
Þ
2

 !
, e2þx2V2-1, ðC:3Þ

where according to (3.5), z1z2 is Oððe2þx2V2
Þ
2
Þ. The remainder estimate here is uniform for large e and x.

The plot of the contour traced by Lðeþ ixV ,xÞ for large e and x, with m¼ m1 ¼ m2 ¼ 1 ða¼ 1Þ, V¼0.3941, can be found
in Fig. 11. In this figure both the plot given by (4.6) and the leading order term of (C.3) are presented, and it can be seen
there is a good agreement between both computations. When ebx, from (C.3)

Lðeþ ixV ,xÞ ¼ 1þ
m2ð2þcosðx=2ÞÞ

m

1

e2
�

2ixV

e3

� �
þO

1

e4

� �
, e-1,

and this asymptotic expression (C.3) implies that for large e the contour traced by L does not cross the negative real axis,
since to leading order the above real part is always positive, whereas the imaginary part can cross the real axis for
x 2 ð�1,1Þ. Similar behaviour can be seen in Fig. 11, where the contour traced by Lðeþ ixV ,xÞ for x 2 ð�400p,400pÞ in the
complex plane forms a closed loop which passes through 1. Therefore, IndðLðeþ ixV ,xÞÞ ¼ 0 in the limit e-1 and this also
holds for all e40. &
Fig. 11. The contour traced by Lðeþ ixV ,xÞ in the complex plane for e¼ 10, m¼ m1 ¼ m2 ¼ 1, ða¼ 1Þ, V¼0.3941, x=p 2 ½�400,400�. The computations for

the solid curve are based on formula (4.6) and those for the dashed curve are based on the leading order part of (C.3).
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The next two corollaries provide us with additional properties of L needed for the factorisation of (4.5). As a corollary of
Lemma 3 we have

Corollary 1. For x 2 R, e40,

argðLðeþ ixV ,xÞÞ ¼ �argðLðe�ixV ,�xÞÞ:

Owing to (C.2), Lemma 4 and Corollary 1 we also have

Corollary 2. For e40, argðLðeþ ixV ,xÞÞ ¼ 0 as x-71.

Appendix D. Solution of the Wiener–Hopf equation (6.3) for a particular load

In order to determine the functions Sþ and S�, as solutions of the Wiener–Hopf equation (6.3), for the sake of
simplicity, we consider a certain type of ‘‘load’’ fF which produces simple examples for the additive split Pþ þP� in the
right-hand side of (6.3).

Let Pþ (P�) be the set of poles and Zþ ðZ�Þ the set of zeros of Lðeþ ixV ,xÞ that are located in the upper (lower) half
plane. The first factor in the right-hand side of (6.3) is singular at the zeros of L� and the singular points of Lþ . Assume
x�p 2 P�, and

Lþ ðeþ ixV ,xÞ �
Ap

½z�e�iðx�x�p Þ�
a , a40,e-þ0, ðD:1Þ

where z� ¼ 1=ðVg�VÞ for x-x�p . Also, suppose for xþz 2 Zþ
L�ðeþ ixV ,xÞ � Az½zþ eþ iðx�xþz Þ�

b, b40,e-þ0, ðD:2Þ

for x-xþz and zþ ¼ 1=ðV�VgÞ. Here, x�p is a pole and xþz is a zero of L located in the lower and upper half of the complex
plane, respectively, and the constants Ap and Az depend on a.

We consider two examples of the function f
(a)

fAðZÞ ¼fðZÞ ¼ �CAð2z�eÞa exp½ðz�e�ix�p ÞZ�Hð�ZÞ, ðD:3Þ

and after taking the Fourier transform, we have

fA,� ¼�
ð2z�eÞaCA

½z�eþ iðx�x�p Þ�
, fA,þ ¼ 0, ðD:4Þ

and (b)

fBðZÞ ¼fðZÞ ¼ CBð2zþ eÞb exp½�ðzþ eþ ixþz ÞZ�HðZÞ:

so that

fB,þ ¼
ð2zþ eÞbCB

½zþ e�iðx�xþz Þ�
, fB,� ¼ 0: ðD:5Þ

In cases (a) and (b), we have CA and CB are constants representing the intensity of the load. Also

lim
e-þ0

fAðZÞ ¼ lim
e-þ0

fBðZÞ ¼ 0: ðD:6Þ

Right-hand side of (6.3) for the load of case (a). We insert (D.4) into (6.3) and taking the limit as e-þ0 and noting that
due to (D.6)

lim
e-þ0

fA,�

L�
¼ 0,

we have using (D.1)

LþSþ þ
S�
L�
¼

ApCA

m2

lim
e-þ0

ð2z�eÞa

½z�e�iðx�x�p Þ�
a½z�eþ iðx�x�p Þ�

:

Here, according to Slepyan (2002, Section 2.2.4), the above limit results in the appearance of the Dirac delta function,
therefore

LþSþ þ
S�
L�
�

2pApCA

m2

dðx�x�p Þ ¼
ApCA

m2

1

eþ iðx�x�p Þ
þ

1

e�iðx�x�p Þ

" #
, e-þ0:
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Right-hand side of (6.3) for the load of case (b). Similarly, using (D.2), (D.5) and

lim
e-þ0

fB,þ Lþ ¼ 0,

by Slepyan (2002, Section 2.2.4), we have

LþSþ þ
S�
L�
¼ lim

e-þ0

CB

m2Az

ð2zþ eÞb

½zþ eþ iðx�xþz Þ�
b½zþ e�iðx�xþz Þ�

� 2p CB

m2Az
dðx�xþz Þ ¼

CB

m2Az

1

eþ iðx�xþz Þ
þ

1

e�iðx�xþz Þ

" #
, e-0:

General solution of (6.3). Consulting the above cases (a) and (b), by linear superposition the right-hand side of (6.3) has
the form

LþSþ þ
S�
L�
¼

1

m2

X
xp2P�

Ap
1

eþ iðx�xpÞ
þ

1

e�iðx�xpÞ

� �
þ

1

m2

X
xz2Z þ

Bz
1

eþ iðx�xzÞ
þ

1

e�iðx�xzÞ

� �
,

for e-0, where Ap and Bp are arbitrary complex constants.
Then the functions Sþ and S� are given by

Sþ ¼
1

m2Lþ ðxÞ

X
xp2P�

Ap

e�iðx�xpÞ
þ
X

xz2Z þ

Bz

e�iðx�xzÞ

2
4

3
5,

S� ¼
L�ðxÞ
m2

X
xp2P�

Ap

eþ iðx�xpÞ
þ
X

xz2Z þ

Bz

eþ iðx�xzÞ

2
4

3
5, ðD:7Þ

where e-þ0. In Section 6, (6.4) follows by considering terms in (D.7) which correspond to x�p ¼ 0 in (D.1) and (D.3).

Appendix E. Evaluation of L7 for x-0

Now, using the Cauchy-type integral of (6.2) and the asymptotic representation (4.18) for L when x-0, we derive
asymptotes of the functions L7 near zero, found in (7.2). The logarithmic term in (6.2) is rewritten as

ln Lðeþ ixV ,xÞ ¼ ln 9Lðeþ ixV ,xÞ9þ i argðLðeþ ixV ,xÞÞ:

Then

L7 ðeþ ixV ,xÞ ¼ exp 7
1

2pi

Z 1
�1

ln9Lðeþ isV ,sÞ9
s�x

ds

� �

�exp 7
1

2p

Z 1
�1

argðLðeþ isV ,sÞÞ

s�x
ds

� �
: ðE:1Þ

The first exponent on the right, by the Cauchy theorem, defines the modulus of Lðeþ ixV ,xÞ, whereas the second exponent,
owing to the expansion

1

s�x
¼
X1
n ¼ 0

xn

snþ1

yields

exp 7
1

2p

Z 1
�1

argðLðeþ isV ,sÞÞ

s�x
ds

� �
� exp 7

1

2p

Z 1
�1

argðLðeþ isV ,sÞÞ

s
ds

� �
,

for x-0. The integrand in the right-hand side is an even function as a result of Corollary 1, and so

exp 7
1

2p

Z 1
�1

argðLðeþ isV ,sÞÞ

s�x
ds

� �
� exp 7

1

p

Z 1
0

argðLðeþ isV ,sÞÞ

s
ds

� �
:

Therefore, allowing x-þ0 in (E.1), and using Proposition 3, we obtain (7.2).
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