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EVALUATION OF STRESSES IN STRONGLY INHOMOGENEOUS ROCK 

WITH MULTIPLE CRACKS, OPENINGS AND PILLARS 

 

L. Rybarska-Rusinek, E. Rejwer and D. Jaworski 
Rzeszow University of Technology, Poland 

 
The paper tackles the problem of stress evaluation at areas of strong field concentration in close vicinity of a moving mining front, 

pillars, faults, inclusions and other natural inhomogeneities. Its solution is of essence for estimating rockburst danger and proper 

planning of mining. The paper aims to increase the accuracy of stress evaluation to the level needed for making reliable practical 

decisions. To this end, we suggest using: (i) hypersingular boundary integral equations (H-BIE) specially tailored to account for 

displacement discontinuities (DD) on surfaces of openings, contacts of structural blocks, faults and cracks; (ii) higher-order 

approximations of the DD and tractions when solving the BIE by the boundary element method (BEM); (iii) special tip and (multi-) 

wedge elements, which allow one to accurately model asymptotic behavior of stresses near singular points like edges of openings, 

common apexes of structural elements, intersections of faults or/and cracks. These improvements are employed in frames of the 

BEM joined with the fast multipole method (FMM) to solve problems with high (up to millions) degrees of freedom. In this way, we 

consider both 2D and 3D problems. For 2D problems, the implementation in the form of complex variable BEM-FMM is presented. 

For 3D problems, we give new analytical quadrature rules, which notably increase the accuracy of evaluation of stresses at areas 

of their concentration. Examples, illustrating the efficiency of the techniques developed, accompany the exposition. 

 

INTRODUCTION 

Combining numerical modeling and seismic 

monitoring in mines has become an important means for 

stress and rockburst control and for making practical 

decisions (e.g. Zubkov et al.
1986

, Napier and Stephansen
1988

, 

Zipf
1992

, Linkov et al.
1997

, Spottiswoode
2001

, Wiles et al.
2001

 

and Dobroskok et al.
2010

). It is facilitated by the progress in 

computers, numerical techniques, informatics and mining 

seismology. The practical significance of modeling in real 

time is obvious from activity of the institutions like 

Integrated Seismic Systems International Limited and 

presently Institute of Mine Seismology. It is also evident 

from recent results in joining numerical geomechanical 

modeling with modeling of seismicity (Dobroskok et al.
2010

). 

For mining problems concerning with tabular deposits, 

the boundary element methods (BEM) facilitate accounting 

for closely located surfaces of openings. Among the BEM, 

the hypersingular form (H-BEM) is the most attractive 

because it employs the very physical quantities, displacement 

discontinuities (DD) and tractions, which enter boundary and 

contact conditions (detailed comparison may be found in the 

paper by Linkov
2004

). This is especially important when 

accounting for layered and/or blocky structure of rock mass, 

contact interaction at block interfaces, faults and cracks. Thus 

most of the codes, used for 3D modeling of stresses in mines 

(see, e.g. Zubkov et al.
1988

, Napier and Stephansen
1988

, 

Zipf
1992

, Linkov et al.
1997

 and Dobroskok et al.
2010

), are 

based on hypersingular forms of the boundary integral 

equations (BIE) of the elasticity theory. 

To the date, the codes available employ zero-order 

approximations of the geometry and physical quantities 

(DD and tractions). This actually corresponds to the face-

element method rising to Salamon
1963, 1964

 and Crouch’s 

displacement discontinuity method (see, e.g. Crouch
1976

). 

However, it appears that the zero-order approximations do 

not meet practical demands always. Daily application of the 

available codes to mining problems has revealed the need to 

increase the accuracy, which is sometimes insufficient to 

make reliable practical conclusions. The increase may be 

achieved only by using higher order approximations and by 

accounting for asymptotic behavior of quantities near 

singular points like edges of seams. When developing the 

BEM with such improvements, we need also to have in 

mind that practical applications deal with vast areas of 

mining, which include many openings and pillars of 

complicated configuration, a number of seams and faults. 

This requires solving problems with many (up to millions) 

degrees of freedom (DOF). To do it, the fast multipole 

methods (FMM) are to be used (see, e.g. Rokhlin
1983

, 

Greengard and Rokhlin
1987

, Ying et al.
2003

, Liu and 

Nishumira
2006

). 

Consequently, there is need in developing a BEM of 

higher accuracy in frames of the FMM. The objective of the 

work is to develop such a method. It will serve us to work 

out an improved code for evaluating rockburst hazard and 

simulating seismicity in the line of already existing 

approaches (e.g Napier and Stephansen
1988

, Salamon
1993

, 

Linkov et al.
1997

, Napier
2001

, Spottis-woode
2001

, Wiles 

et al.
2001

, Linkov
2006

 and Dobroskok et al.
2010

). 

The structure of the paper is as follows. In Section 2, 

we present the complex variable (CV) H-BEM. By using 

the advantages of the CV, we give efficient recurrence 

quadrature rules for evaluation of (i) influence coefficients 

used in the CVH-BEM and (ii) moments of multipole 

expansions used in the FMM. The equations account for the 

curvature of the boundary and contacts, higher order 

polynomial approximation of densities and asymptotic 
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behaviour of the DD near tips of open arcs and intersections 

of structural elements. To simplify presentation, we 

illustrate the accuracy, stability and robustness of the 

resulting method by considering harmonic problems, 

previously solved by other authors. Section 3 contains 

prerequisites for using higher order approximations and 

square-root asymptotics of the DD in 3D mining problems. 

We present the H-BIE for a blocky system comprised of 

rocks with different elastic modules, analyze singular and 

hypersingular integrals entering it and consider higher order 

approximations. For triangular elements with polynomial 

approximations, we prove the theorem stating that influence 

coefficients may be evaluated analytically for polynomials 

of an arbitrary order. We also provide the needed 

quadrature rules. 

2D PROBLEMS FOR INHOMOGENEOUS ROCK, 

CVH-BEM AND FMM 

Problem Formulation 

Our objective is to increase the accuracy of numerical 

modeling of fields induced by mining in inhomogeneous 

rock. To reach the objective, it is necessary to employ 

advanced computational techniques. They include (i) higher 

order approximations, than commonly used, to increase the 

accuracy and (ii) using them in the BEM combined with the 

FMM to efficiently account for many DOF. Implementation 

of the technique, being quite involved, we start from 

considering 2D problem. This serves us to gain experience, 

to save time when performing multiple numerical 

experiments and to obtain benchmarks needed when turning 

to 3D problems. 2D problems are also significant for many 

applications. 

In 2D elliptic problems, using the CV suggests 

significant advantages. The CV form of the BIE for piece-

wise homogeneous rock is (Linkov
2002

): 
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where L  is the total boundary of the system of blocks 

(Figure 1); ,    43  in plane strain, 

)1/()3(    in plane stress,   is the Poisson’s ratio 

of a block; ,  uuu  ,    

2/)(   
 
is the average traction across a contact, 

2/)(   uuu  is the average displacement, the complex 

traction is defined as ,tn i  n  and t  is the 

normal and shear traction, respectively; 
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,)/1/1(5.04

  a  
  is the shear modulus; the superscript “+” (“-”) refers to a 

value from the left (right) to the direction of travel on L ; 

an overbar denotes complex conjugation. 

 

Figure 1 

The Equation 1 serves to find the displacements in rock 

after the displacement discontinuities (DD) are found from 

the CVH-BIE: 
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 (2) 

Equation 2 may be efficiently solved by employing 

CVH-BEM. After representing the contour L  by boundary 

elements, it appears that we need to evaluate seven standard 

integrals: 
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where eL
 

is a boundary element, )(f  is the density 

function, iyxt   is the CV coordinate of a field point, 

 is the CV coordinate of an integration point, ds  is the 

length increment of the integration path. 

The proper integrals (4) are promptly found 

(Linkov
2002

) when having the integrals (3). Thus in further 



 

EVALUATION OF STRESSES IN STRONGLY INHOMOGENEOUS ROCK - 251 - 

discussion we focus on evaluation of the three integrals (3). 

We need to efficiently find them for straight and curvilinear 

elements with a density, approximated by a polynomial of 

an arbitrary order for a usual element and by a function 

accounting for asymptotic behavior for a tip, or corner, or 

multi-wedge element. 

Improved Approximation of the Contour and Density 

We represent a smooth part of a contour L  by a sum 

of two types of boundary elements eL : straight and circular-

arc. In contrast with common using only straight elements, 

this provides continuity of the tangent to the contour. 

Efficient integration over these types of elements is 

performed in local coordinates. The latter are chosen to have 

a standard straight or circular-arc element. Specifically, 

1) A straight element is transformed by the rule 

  'expC  Cil  

into the standard straight element of unit half length and 

located symmetrically with respect to the origin of the local 

coordinate system. Herein, l2  is the length of the 

considered element, C  is its center in the global system, 

and C  is its angle with the global x-axis; 

2) A circular-arc element is transformed by the rule 

  'expC  CiiR  

into the standard circular-arc element of unit radius; the 

standard element has the same angle as the considered 

element and it is located symmetrically with respect to the 

x  – axis of the local system. Herein, R  is the radius of the 

considered element, C  is the center of circle in the global 

coordinates, C  is the angle of the tangent at the element 

midpoint with the global x -axis. 

At a standard element, the density is approximated as 

   ''')'( 

Pcf  , (5) 

where 'c  is the end point of the integration path; for a 

singular element, its singular point is located at 'c .  'P  

is a linear combination of form-function. For a straight 

element, the form-functions are algebraic Lagrange 

polynomials of an arbitrary order; for a circular-arc 

element, they are trigonometric Lagrange polynomials of an 

arbitrary order. The exponent   accounts for power-type 

asymptotic behavior of the density. For an ordinary (non-

singular) element,   = 0. For the DD near a crack tip in 

homogeneous elastic medium,   = 1/2; for the traction 

near the tip of a thin inclusion,   = -1/2; for multi-wedge 

points,   is found numerically (Blinova and Linkov
1995

, 

Linkov et al.
2002

). 

Clearly, the approximation (5) may serve to increase 

the accuracy when the degree of the polynomials is high 

enough. In practice, using polynomials of the second order 

provides quite accurate results. There are efficient recurrent 

analytical quadrature rules, serving for evaluation of the 

integrals (3) when using these improved approximations of 

the boundary and density (Linkov
2002

 and Linkov et al.
2002

). 

They are implemented in the CVH-BEM. Thus the part of 

the problem, concerning with increasing the accuracy of the 

BEM, is solved. Now we need to combine this BEM with 

the FMM to enable calculations of stresses in strongly 

inhomogeneous rock, when the number of unknowns is 

very big (up to millions). 

Comment. When increasing the accuracy of calculations 

for 3D problems, we are to follow the same route. 

Specifically, it is reasonable to account for curvature of the 

boundary, where it is curvilinear, to use polynomials of 

higher degree for densities and to account for power-type 

asymptotics of a density near the contour of an opening in a 

tabular mine. 

BEM-FMM: Building the Hierarchical Quad-tree 

The combined BEM-FMM employs aforementioned 

boundary elements (straight and/or circular-arc) and the 

density approximation (5). Computations are performed in 

complex variables, thus an array of input data contains CV 

coordinates of the central points of boundary elements. 

The total number of the elements, and consequently the 

number of their central points, is M . We also prescribe a 

maximal number maxN  of elements in a leaf that is the 

smallest object in a tree structure. 

The discretized contour L  is embedded in a square of 

sufficient size. The square is called the parent cell at 

level 0. Obviously, it contains all M central points. Then 

we start the process of successive division of the square 

into cells. It is assumed that an element belongs to a cell, 

if its center belongs to the cell. Thus, building of a quad-

tree involves only centers of BE.  

The parent cell at level 0 is divided into four square 

cells. Empty cells are excluded from further consideration. 

Non-empty cells are called child-objects. In this process 

each boundary element is attributed to a single child-object. 

A child-object is either a leaf (when the number of points in 

it is equal or less than maxN ) or it is called a branch 

(when the number of points in it exceeds maxN ). As a result 

we obtain branches and leaves of level 1. 

Similar division is repeated for each of the branches of 

level 1. As a result we obtain branches and leaves of 

level 2. For it, we repeat the division. We continue this 

process until all the child-cells are leaves. To reduce 

memory and time expense, we use special renumeration 

(Rejwer et al.
2012

). Finally we obtain the needed quad-tree. 

For each leaf at each level, we save information on the 

CV coordinates of the central point of the leaf and its 

parent, the level at which the leaf appears, etc. These data 

serve as the input data in further calculations, including 
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multipole and local translations, expansions (see, e.g. Liu 

and Nishumira
2006

) and direct integration. 

Comment. When considering 3D problems for strongly 

inhomogeneous rock with multiple cracks, openings and 

pillars (medium with a large number of the degrees of 

freedom), we follow the same way of obtaining the tree. 

The only differences are that we use real variables and the 

centers of BE are prescribed by three coordinates in 3D 

space. As a result, we obtain the oct-tree structure instead 

of the quad-tree. 

BEM-FMM: Evaluation of Multipole Moments 

Further calculations include procedures performing 

evaluation of multipole moments, translations and direct 

integration (see, e.g. Liu and Nishumira
2006

). The accurate 

direct integration is explained above. The translations, 

being performed in a standard way, there is no need to 

dwell on them. Meanwhile evaluation of multipole 

moments involves the suggested approximations, and it 

requires special discussion. In contrast with the conventional 

numerical integration, we employ the advantages of the CV 

and perform all integrations analytically. 

It can be easily seen that, when using the 

approximation (5), the evaluation of multipole moments is 

reduced to considering the standard integral of the form: 

    ,''''''

'

'

0 

c

b

ljl

j dcM 
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 (6) 

where b  and c  is start and end point of a standard 

boundary element in its local coordinates, respectively. For 

a three-node approximation of a density, 2,1,0j  when 

an element is the standard straight element; 0,1,2 j  

when an element is the standard circular-arc element. The 

values l

jM  are called the multipoles of order l  
( mll ...,1,0 , ml  is the highest degree of multipoles used in 

the expansions). 

In order to obtain analytical recurrence formulae for 

multipoles on the standard straight element, we firstly 

consider the integral 
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For ,0  the integral (7) is calculated by using the 

recurrent dependency 
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Similarly, for ,0  we have 
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Then the multipoles (6), for the standard straight 

ordinary or singular multi-wedge element (in particular, 

square-root tip element for a crack), are found by the 

recursive relations: 

,0

ll JM   ,'0

1

1

lll JJM  
 

llll JJJM 2

0

1

0

2

2 ''2   
. 

Considering the integral (6) over a circular-arc element 

(ordinary or singular) we firstly find the values of the 

starting integrals 
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They are evaluated analytically by using the obvious 

change of variables and the formulae: 
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where nm / , t  = 1 for  cbt , , t  = 0 for  cbt , , 

 itt exp  and   nsitt
n

s /2exp
/1

   is a root of 

the complex value t . The roots n b  and n c  are principal 

ones ( s  = 0). 

The multipoles for the standard circular-arc (ordinary 

or singular multi-wedge) element are then obtained by 

employing the recurrent dependencies: 
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1

20

1

12 ' 
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

  lll MMM  , 

where 
lJ  are defined above by Equations 8 and 9. 

BEM-FMM: Estimation of Accuracy and Robustness 

We may estimate improvement of the accuracy and 

robustness, provided by the suggested form of the CVBEM-

FMM, by comparing results with those obtained by 

employing the conventional BEM-FMM. To this end, we 

revisit the problem, for which the conventional results are 

available (Liu and Nishumira
2006

). Although the problem 

concerns with the potential and flux distributions, it 

involves the same key-integrals (3), which enter the 

equations of 2D elasticity problems.  

We consider a harmonic problem for an annular region 

between two concentric circles 1L and 2L of radius 1r  and 

2r  )( 21 rr  , respectively. The potential (temperature) is 
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prescribed on the inner boundary 1L : 1  . The flux is 

known on the external boundary 2L : 2nn qq  . The 

analytical solution of the problem is:

  )/ln( 1221 rrrqr n . When taking the values, used by 

Liu and Nishumira
2006

, 1r  = 1.0, 2r  = 2.0, 1  = 100.0 and 

2nq  = 200.0, the exact solution is: 

  258872.377ln
1

2
22122 
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Firstly, similar to Liu and Nishumira
2006

, we use 

straight elements to represent the boundaries. But in 

contrast with these authors, we employ the density 

approximation of the second order instead of zero order 

used by them. This gives an idea on the influence of 

improved approximation of densities only on the accuracy 

of the solution (the approximation of the contour is still of 

zero order). To make results comparable, similar to Liu and 

Nishumira
2006

, we use the iterative method GMRES with 

right preconditioner in the form of a block-diagonal matrix. 

The latter is obtained by direct integration only for the 

elements in each leaf. The highest degree of multipoles ml  
is changed from 10 to the value 15, used by these authors, 

and to the value 25. This serves us to see the influence of 

truncating Taylor’s expansions.  

The maximal number maxN of elements in a leaf is 

taken 1, or 2 instead of the value 20 used by Liu and 

Nishumira
2006

. It is taken 1, when the total number of 

elements is 36 or 72; it is taken 2 when the total number of 

elements exceeds 72. Emphasise that reducing this number 

drastically decreases the run time of iteration, performed by 

GMRES. Thus, if the iterations converge sufficiently fast 

and the accuracy of the solution obtained is comparable 

with that for greater number maxN , this make a code more 

robust. 

For the number of elements 36 and 72, the convergence 

to the prescribed tolerance 10
-8

, is obtained in 3 iterations. 

Furthermore, even for more than 360 elements, the tolerance 

10
-8

 is achieved in 20 iterations only. 

Table I contains our results, obtained for straight 

elements with three node approximation, and the results 

given in the paper by Liu and Nishumira
2006

. We may see 

that in the both cases the accuracy is quite satisfactory. The 

accuracy of our calculations appears less for the potential 

and better for the flux. This implies that increasing the 

order of the density approximation without improving the 

approximation of the boundary, does not influence the 

accuracy of the solution significantly. Meantime, 

it improves robustness because, as noted, the number of 

elements maxN in a leaf may be significantly reduced. 

Other conclusions from Table I are as follows. As could 

be expected, the greatest relative error occurs when the 

number of elements and the degree of multipoles are 

minimal: 36 elements and 10 multipoles. For the potential, 

maximal error is 0.003; for the flux, it is 0.006. The error 

notably decreases when the number of straight elements 

grows. 

The calculations show that the accuracy for relatively 

small number of boundary elements (from 36 to 720) is 

better when taking ml  = 10 or 15, than for ml  = 25. 

Meanwhile, with growing number of the elements, the 

accuracy becomes better when ml  = 25. For more than 1440 

elements, employing the moments of degree about 25, gives 

very accurate results. Indeed, actually the error is on the level 

of round-off errors of a computer when performing 

calculations with double precision. 

Now we turn to the improving the approximation of the 

boundary. For the same problem we use circular-arc 

elements. Note that in the considered case they provide 

exact representation of the contour. Using these elements 

for the same example with the same input parameters, gives 

results presented in Table II. We see that proper 

representation of the geometry drastically improves the 

accuracy and make a code much more robust. 

Even for the total number of elements equal to 16, the 

relative error does not exceed 10
-5

. For straight elements, 

such accuracy is reached only when the number of elements 

reaches 9600. The decrease of time expense is remarkable: 

for 9600 straight elements it is 120 seconds, while for 16 

circular-arc elements it is fractures of a second. 

We conclude that using the suggested improved 

approximations of the boundary and densities provides 

significant increase of the accuracy and a code becomes 

drastically more robust. 

3D PROBLEMS FOR INHOMOGENEOUS ROCK, 

HBEM AND FMM 

Problem Formulation 

We employ the same means to increase accuracy and 

account for many DOF, which have been successfully 

employed in 2D problems. Specifically, we use higher 

order approximations and combining the HBEM, tailored 

for inhomogeneous media, with the FMM. Although the 

general line is the same, there are differences, on which we 

focus below. They concern with the form of the BIE for 

inhomogeneous media, particular approximations of 

densities, recurrent quadrature rules for direct integration 

and quite different form of the FMM. 
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Table I The values of temperature and flux for various number of boundary 

elements and various order of multipole moments 

N moments 
  q  

CV BEM-FMM BEM-FMM CV BEM-FMM BEM-FMM 

36 
10 376.180125 - -399.753260 - 

15 375.687333 376.723694 -400.048423 -401.771619 

72 
10 376.807521 - -400.011717 - 

15 376.867515 377.140967 -400.010378 -400.400634 

360 
10 377.250431 - -400.016922 - 

15 377.243632 377.254774 -400.009767 -400.014881 

720 
15 377.257826 377.257857 -400.00208 -400.003468 

25 377.255108 - -400.004659 - 

1440 
15 377.257826 377.258607 -400.002080 -400.000695 

25 377.257935 - -400.002027 - 

2400 
15 377.258513 377.258795 -400.001562 -400.001929 

25 377.258540 - -400.001519 - 

4800 
15 377.258425 377.258852 -400.000389 -400.001557 

25 377.258739 - -400.000250 - 

7200 
15 377.258694 377.258848 -400.000461 -39.997329 

25 377.258840 - -400.000340 - 

9600 
15 377.258668 377.258859 -400.000434 -399.997657 

25 377.258857 - -400.000346 - 

 

Table II The values of temperature and flux, 

when approximating the contour by ordinary circular-arc elements 

   q  

moments 15 25 15 25 

N=8 377.619611 377.264940 -400.591340 -400.022230 

relative error 1.00E-01 2.00E-03 1.00E-01 6.00E-03 

N=16 377.258894 377.258884 -400.000012 -400.000005 

relative error 6.00E-06 3.00E-06 3.00E-06 1.00E-06 

N=32 377.258848 377.258882 -399.999978 -400.000042 

relative error 6.00E-06 3.00E-06 6.00E-06 1.00E-05 

     

Consider a system of 3D isotropic elastic blocks. For 

simplicity, we assume that the Poisson’s ratio is the same 

for all the blocks. This assumption is acceptable for most of 

rocks having the Poisson’s ratio close to 0.3. Besides, in the 

problems under consideration, the tractions are continuous 

through a contact. Then the real equations, corresponding to 

the CV Equations 1 and 2, are (Linkov
2002

): 
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 (11) 

Herein, S  is the total surface of blocks;   is the shear 

modulus; ,nt u  are the vectors of tractions and 

displacements, respectively; n is the vector of the normal to 

the surface S  at the field point x; U  is the matrix of 
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fundamental solutions; for infinite elastic medium, it is 

defined by the Kelvin’s solution: 

    ,14
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where  2kk yxR  is the distance between the field x 

and integration y points; the matrix    TSS xyJyxU ),(,   

defines the kernel of the potential of double-layer. The 

superscript “+” (“-”) refers to the limit of a value from the 

side, with respect to which the normal n is outward 

(inward). The Equation 10 may serve to find displacements 

after the displacement discontinuities are found from the 

HBIE (11). When using (10), it is assumed that nt  = 0 

at contacts of blocks, and nn tt   at external boundaries of 

blocks. 

The matrix 
SJ  is obtained by applying the traction 

operator nT  to the matrix U : 
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For the Kelvin’s fundamental solution it is: 
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The hypersingular kernel is    yxUTyxJ S

n

H ,,  . 

Emphasize that the matrices U , 
SU , 

sJ and /HJ  do 

not depend on the shear modulus. 

Improved Approximation of the Contour and Density  

We solve the HBIE (11) by the BEM. To increase the 

accuracy of approximation of the surface S , the latter is 

represented by a sum of p , in general curvilinear, 

triangular elements 
qS  ( pq ,,2,1  ). For each of the 

triangles, we assign a plane through its three vertices and a 

plane triangle in this plane. Integration over a curvilinear 

triangle is performed by transforming it into the plane 

triangle by using common shape-functions (see, e.g. 

Banerjee and Butterfield
1981

). Similar to 2D problems, we 

assume that an element is small enough and consequently 

we may use second order approximations of the boundary. 

Thus the shape functions are second order polynomials in 

the local coordinates of the plane triangle. The surface 

Jacobean is expanded into Tailor’s series in these 

coordinates. For further discussion its order does not 

matter. In practical calculation, for a small triangle, it is 

sufficient to use polynomials of second order. With these 

prerequisites, it is possible to evaluate all the integrals 

entering (11) over a curvilinear triangle analytically in the 

way described by Linkov et al.
1997

. 

Hypersingular integrals. Not dwelling on details, 

mention that when accounting for curvature of a triangle, 

integration leads to elliptic integrals (the latter are evaluated 

by standard subroutines of IMSL Math Library). In the 

cases of plane triangles, it leads to logarithmic functions 

explicitly given in the paper cited. Note that in mining 

problems only hypersingular integrals involve the need in 

accounting for square-root asymptotics. Since this 

asymptotic corresponds to plain-strain or antiplane 

deformation, the elements serving to account for it may be 

taken plane. Then the discussion, presented in the cited 

paper (Linkov et al.
1997

) leads to the conclusion that 

integration may be performed analytically, as well. Again 

it results in elliptic integrals.  

Singular integrals. Singular integrals contain the 

traction as the density. Thus, as mentioned, they do not 

have square-root asymptotics. Consequently they may be 

accurately approximated by common polynomials. We shall 

sketch the way of their analytical evaluation for a plane 

triangular element. Such elements are of major importance 

for modeling mining problems concerning with tabular 

deposits. The calculations are performed in the local system 

of the element. 

It is easy to see that evaluation of singular integrals is 

reduced to finding the partial derivatives: 
321
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where Pmlk ,,2,1,0  , k  and l are whole numbers, 

Pm  is the degree of approximating polynomial. 

A triangle may be presented as a sum of two right 

triangles. For a right triangle (Figure 2) and polynomial 

density, we have: 
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(12) 

where ,23 xbxA
a
b  ,32 xaxA

b
a  

a
bB   and 

b
aB  . 

Consider the integral on the r. h. s. of (12). We have the 

following recurrence formula: 
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This implies that, actually, we need to evaluate four 

integrals only: 
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Figure 2 

The first two of them are found by using the recurrence 

equation: 
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The two remaining integrals are evaluated by 

integration by parts and then using the Euler substitutions: 
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Comment. In some cases it is more efficient to evaluate 

the partial derivative before integration. For instance, 
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These equations and recurrent dependences serve for 

direct integration performed for leaves. 

BEM-FMM: Building Hierarchical Tree and further 

Calculations 

We build a hierarchical tree in 3D in the same way as in 

2D. The insignificant differences are mentioned above. 

Meanwhile, the form of the FMM is quite different. We 

intend to employ the form of FMM suggested by Jing, Biros 

and Zorin
2003

. It avoids cumbersome expansions into series in 

spherical functions. Its efficiency in solving 3D mining 

problems under consideration has been evidently 

demonstrated by Dr. Sewjee (Institute of Mine Seismology). 

We suggest improving the accuracy of the method by using 

the approximations and recurrent equations derived. 
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