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Numerical modelling of seismic events is the basis for quantitative studying and interpretation of seismicity in well-established 

terms of solid mechanics. In this way we obtain a better basis for making decisions concerning with mining, rock burst mitigation, 

oil and gas exploration and production. The paper summarizes computational, geomechanical and geophysical rationale for 

progress in this area. We explain in detail how to employ the theoretical rationale for developing a computer code providing both 

mechanical quantities (stresses, strains, displacement, etc.) and seismic data (spatial and temporal distributions of events and 

seismic characteristics used in mining seismology). It is shown that a conventional code of the BEM, FEM, DEM or FPC type 

may be easily adjusted to simulations of seismic and aseismic events by complimenting it with a number of subroutines, described 

in due course. Examples illustrate applications to problems of mining and hydraulic fracturing. 

 

In memory of the founder of synthetic mining 

seismicity, Professor Miklos Salamon 

INTRODUCTION 

A Little of History 

Twenty years have passed since 1993, when Professor 

Miklos Salamon formulated the first theoretical rationale 

and practical application of synthetic mining seismicity. In 

fact, his key-note address to the 3rd International 

Symposium RaSiM (Salamon
1993

) contained all the germs 

of generality. He suggested as an urgent task for rock 

mechanics “to evolve a tool which provides the opportunity 

of relating seismicity to the changing mining layout and to 

geological environment”. And what is especially 

significant, he suggested “the method … to furnish the basis 

of such a tool” (p. 299). 

Further development has actually followed the line by 

Salamon. The only principal improvements consisted in 

including: 

 Softening of a fractured element which, as shown by 

Cook
1965a, 1965b

 (see also Hudson et al.
1972

 and Linkov
1994

), 

provides a measure of brittleness and instability of rock. 

 Time effects, which opens an opportunity to account 

for aseismic events and to model intervals between seismic 

events. 

A natural way to account for time is to explicitly 

include creep into the constitutive equations. Napier and 

Malan
1997

, Malan and Spottiswoode
1997

 included the time 

explicitly into constitutive equations for contact interaction 

when numerically modeling seismicity. The contact was 

assumed to be viscoplastic. The authors employed the 

simplest viscous element in the programs DIGS, MINSIM, 

and MINF, what allowed accounting for aseismic effects. 

In addition to the mentioned dependences, the results 

included catalogues of synthetic seismicity and chains of 

events after a blast. 

The advantages of this step included providing (under 

certain assumptions) the main seismic characteristics 

(location, energy, etc.) and agreement with observations. 

Nevertheless, in the cited papers, there were limitations as 

concerned with accounting for softening. The latter was 

used in a model, which includes a softening element 

in parallel with a viscous element. In accordance with 

the general theory (Linkov
2002

), the latter model exhibits 

fracture acceleration, but actually it ceases to generate 

instability in the form of a jump. It is because infinite 

instant stiffness of a viscous dash-pot prevents instability. 

The simplest model capable to simulate both seismic 

and aseismic events is the Elasticity-Softening-Creep (ESC) 

model (Linkov
1997

). In this model, in contrast with that used 

previously, the softening element is included in series 

(not parallel) with the viscous (creeping) element. Its 

analysis shows (see, e.g. Linkov
1997, 2002

) that the ESC-

model captures the most important effects: decaying 

aseismic deformation; smooth although accelerating 

aseismic deformation; and instant instability (seismic 

event). It appears that near a point of instant instability, 

there occur fracture acceleration and that arbitrary short 

time intervals may be observed near the point of dynamic 

instability. At the level of the earth crust, such aseismic 

accelerating movement appears as a so-called silent 

earthquake (see, e.g. Linder et al.
1996

, Dragert et al.
2001

 and 

Kawasaki
2004

). Revealing the existence of accelerating 

events fills the gap between slow creep and instant 

instability (seismic event). 

Although models used differ in significant details, 

their employment has clearly demonstrated that synthetic 

seismicity mimics observed seismicity in the most essential 

features (Sellers and Napier
2001

, Spottiswoode
2001

, 

Linkov
2005, 2006

). As noted by Napier
2001

: “… it appears that 
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the explicit failure mode shows some superficial 

correspondence to observed seismic behavior but displays 

number of shortcomings”. 

Note that sometimes modeling in the line of Salamon 

is called “active”, because it models expected events 

without employing the data on observed passed events. In 

contrast, “passive” modeling is based on employing data on 

events observed in a mine (e.g. Wiles et al.
2001

). 

Passive modelling uses data on the location, 

orientation, radius of cracks and displacement 

discontinuities (DD), obtained from seismic monitoring. 

They serve as input data for numerical modeling of stress 

distribution on mining steps. The calculated stresses are 

used for conclusions on stability and for calibration of the 

model. The main problem of the passive approach is to 

transform seismic data into input information on the 

orientation of elements and values of the DD. 

The applications of the passive approach look quite 

promising. As written in the paper by Wiles et al.
2001

: “The 

authors believe that this technique provides a unique 

opportunity for construction of mine-wide stability models 

incorporating major structural factors”. The authors 

continue: “Some would argue that since part of the 

rockmass behavior occurs aseismically, we cannot achieve 

this goal. We would argue that it is also true that part of 

rockmass behavior occurs seismically…” Still the approach 

has obvious shortcomings: impossibility to use it on the 

stage of planning, neglecting aseismic events and 

difficulties with inversion of seismic data into the DD 

on cracks. 

So far the active and passive approaches have been 

used separately. Meanwhile, nothing prevents to join them. 

In fact, this means calibration of the input data, used in 

direct modeling, by comparing the simulated events with 

the data of observation. Such joined geomechanical and 

seismic monitoring, discussed below, presents a challenge 

for modern science and practice. 

Rock Mechanics and Seismicity: 

Advantages of Integration 

Why is it important to join rock mechanics and 

seismicity? Let us recall merits and flaws of the two. Rock 

mechanics operates with concepts and quantities rigorously 

established in solid mechanics, such as displacement, strain, 

stress, equilibrium, stability, and the like. Consequently, 

if provided with reliable input data on rock structure, 

properties, contact and boundary conditions, it is possible 

to solve a problem by using modern computers and 

numerical techniques. 

Unfortunately, the needed input information is limited 

and uncertain. For years, it has raised a doubt in practical 

usefulness of numerical simulations. As wrote Starfield and 

Cundall
1988

: “…models (mathematical or computational) 

were generally thought to be either irrelevant or 

inadequate. Modellers spent a large part of their efforts 

trying to persuade skeptics that modeling was a useful 

engineering exercise”. 

Uncertainty of input data distinguishes rock mechanics 

from other engineering fields. If following Starfield and 

Cundall
1988

, we consider Holling‟s classification of sciences 

(Figure 1), we can see that our usual region is the region 2 

of good understanding and little information. 

In contrast, mining seismology provides vast data 

on seismic events while there are great difficulties in their 

interpretation in well-established terms of solid mechanics 

needed to make practical decisions. In Holling‟s 

classification, mining seismology is in the area 3 of vast 

data and poor understanding. 

 

Figure 1. Holling’s classification of sciences 

Presently modern numerical techniques allow us to 

account for combined effect of thousands and even millions 

of structural elements and provide understanding of 

simulated processes. Meanwhile, there are no reliable input 

data on real rockmass. On the other hand, modern mining 

seismology processes millions of events, containing data on 

a rock state, while there is no proper understanding of 

the state. We see that the advantage of one tool is the 

shortcoming of the other. Clearly, their integration serves to 

cross-fertilization, which preserves their benefits and 

removes the flaws. 

The scientific advantage of the integration consists in 

joining rich data of seismic monitoring with clear 

understanding of results of numerical simulation providing 

well-established mechanical quantities. This moves us into 

the area 4 on Figure 1 of sufficient data and better 

understanding. 

Practical advantages are also obvious. We obtain a new 

modern tool for assessment of the state and processes in 

rocks and for making decisions. The tool allows us to carry 

out completely controlled seismological experiments, play 

various scenarios, calibrate input parameters, validate 

existing and suggest new methods serving for interpretation 

of seismic data. And what is also important, it is not 

expensive: actually, it is the work for a few specialists. 

Recent Tendency: Joined Mechanical 

and Seismic Modelling and Monitoring in Real Time 

An especial challenge is to use joined mechanical and 

seismic modeling and monitoring in real time. Nowadays, 
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the possibility to implement it is facilitated by tremendous 

progress in computers, numerical techniques, information 

technologies and automatic measurements. Actually, the 

passive approach contains the germs of the joined 

monitoring. It is visibly recognized by the specialists 

applying it, who wrote (Wiles et al.
2001

): “The integration 

of deterministic modeling with seismic monitoring offers 

crucial data regarding local variability and sensitive 

features… Taken together this clearly enhances our 

deterministic prediction accuracy of rockmass response to 

mining”. 

The feasibility of the purpose is evident from the 

papers by Cai et al.
2007

 and Dobroskok et al.
2010

. The 

authors of the first of them used the FLAC and PFC for 

simulation of seismicity induced by large-scale 

underground excavations. The second work employed the 

code SEISM-3D, based on using the general theory 

(Linkov
2005, 2006

) in frames of the hypersingular boundary 

element method (H-BEM). The both papers vividly 

demonstrate that geomechanical and seismic modeling may 

be efficiently joined with daily seismic monitoring in 

mines. It provides important data for making reliable 

practical decisions. 

The trend to meet the challenge is obvious from 

merging of ITASCA (geomechanics consulting and 

software development company) with ASC (Applied 

Seismology Consultants) in 2009. As advertised the site 

http://www.seismology.org/itasca_msapps.aspx (September 

26, 2012), “ASC and Itasca have developed advanced, 

groundbreaking techniques for correlating microseismic 

field observations with simulated microseismicity from 

Itasca's models”. 

The same trend is also seen in transforming the 

ISS International by Dr. Mendecki into Institute of Mine 

Seismology (IMS) in 2011. The Institute, among other 

purposes, aims to compliment daily geomechanical 

calculations with numerical modeling of seismicity in real 

time and to compare the synthetic seismicity with the data 

of seismic monitoring. 

The modeling of stressed state and seismicity joined 

with direct observations becomes of crucial significance for 

hydraulic fracturing. Hydraulic fracturing is widely used 

for stimulation of oil, gas and heat reservoirs. Its 

importance grows with the tendency to extract gas from 

low-permeable shales. The geomechanical data in these 

problems are even less than in those concerning with 

mining. In fact, seismic observations are the main source of 

information on the hydraulic fracture propagation. For this 

reason, the newest methods for modeling hydraulic 

fractures employ the observed seismicity to calibrate 

the input data (see, e.g. Cipolla et al.
2011

 and 

Kresse et al.
2011

). Obviously, the reliability of the methods 

employed will notably gain when complimenting them with 

 

numerical modeling of seismic events and comparing 

synthetic seismicity with observations. The papers by Al-

Busadi et al.
2005

, Dobroskok and Linkov
2008

 show that 

simulation of seismicity, accompanying hydraulic fracture 

propagation, can be efficiently performed. 

Scope and Structure of the Paper 

The main objective of the paper is to present the 

modern theory of joined modeling of mechanical state and 

seismicity in such a form, which provides easy 

implementation in a computer code of a conventional 

numerical method (BEM, FEM, FDM, DEM and the like). 

The paper also aims to: 

1) Distinctly outline the fundamental issues, which stay 

the same when considering a wide variety of applications. 

2) Point out flexible elements, which may vary depending 

on a particular problem and/or available computational 

facilities. 

The exposition takes into account the mentioned 

tendency to carry out joined modeling in real time. It is 

accompanied with examples. 

The structure of the papers is as follows. Firstly, we 

consider fundamentals of modeling a single event. This 

involves concepts of instability in the form of a jump, 

softening behavior, elastic energy release, elastic rigidity 

of rock near a flaw, seismic energy, seismic moment and 

seismic shear. 

Then we consider the time effects of two kinds: those 

governed by processes external to the sources of events 

(for instance, mining steps) and those, which are defined 

by processes in the source of an event. The first group is 

the same as in conventional calculations of stresses. The 

second is specific and it leads us to the Elasticity-Softening-

Creep (ESC) model as the simplest model capable to serve 

for modeling both seismic and aseismic events and intervals 

between the events. 

Having the background for modeling a single event, 

we follow the line by Salamon
1993

 of random seeding crack-

like flaws in the rock mass and checking their stability 

under current stresses. Special attention is paid to proper 

prescribing the values and statistical distributions of 

geometrical and mechanical properties of seeded flaws. 

With these prerequisites, we come to the general 

structure of a computer code for simulation of seismic and 

aseismic events. It appears that it is sufficient to 

compliment a conventional code with a set of quite general 

„seismic‟ subroutines, which may be used in diverse 

computational environments. The discussion of subroutines, 

serving for processing the output data, is accompanied 

by examples of various applications. Brief summary 

concludes the exposition. 

 



 

- 200 - RaSiM8 

MODELING OF A SINGLE SEISMIC EVENT 

Seismicity is a sequence of many individual events. 

Therefore, to simulate seismicity we need to clearly 

understand and properly model a single event. Having a 

tool for such modeling, it becomes possible to randomly 

generate parameters, defining an event, and to obtain 

statistical collection of events called synthetic seismicity. 

Instability in a Form of a Jump 

The essence of a seismic event is a jump from one 

equilibrium state to another with release of elastic energy. 

The excess of the elastic energy released in a jump over the 

energy consumption manifests itself through elastic waves, 

registered in (micro)seismic observations. Although wave 

receivers are located at a distance from the source, 

seismograms contain important information on the source 

such as its location, magnitude, seismic moment, etc. 

(see, e.g. Aki and Richards
2002

, Gibowicz and Kijko
1994

, 

Mendecki
1997

 and Rice
1980

). These seismological data 

obtained at a distance from the source may be compared 

with that provided by an analysis of the jump in the source 

itself. Here we focus on such an analysis. 

From the mechanical point of view, a jump is a form of 

instability with elastic energy excess transformed into 

kinetic energy of waves. Jumps occur in rock at different 

scales. In a loaded specimen, they occur on the level of 

microcracks and appear as acoustic emission. It may serve 

to validate modeling of seismic events under known 

conditions of loading. In oil and gas production, jumps 

appear as microseismicity around a borehole or propagating 

front of a hydraulic fracture. In a mine, we have a larger 

scale: there emerge not only microseismic events but also 

large dangerous jumps, rockbursts. Their magnitude in the 

Righter scale may reach two. Moreover, in the earth crust 

the length and magnitude scales are much greater; an event 

may appear as an earthquake. The magnitude may reach 

eight. 

Despite the length scale changes nine orders (from 

micro meters to kilometres) the essence of a single event is 

the same: it is the dynamic (with the energy excess) 

instability. Consequently, proper modeling of a single event 

requires the study of instability and it refers to events on a 

wide range of scales. 

Equilibrium, Stability and Instability 

The theoretical canvas of studying instability in 

mechanics is common. Firstly, we need to find a current 

state. To this end, the equations of continuum mechanics 

for a small volume of a medium, associated with 

a mathematic point, are used. They include: 

 Dynamic or static equations of motion (equilibrium), 

which are actually the Newton‟s second law, specified for 

a point of continuum. 

 Kinematics equations, defining changes in mutual 

positions between closely located points of the medium. 

 Constitutive equations for a volume element, which 

connect dynamic quantities of the first group with 

geometric quantities of the second. 

This yields a complete system of partial differential 

equations (PDE), defined at points of a considered region of 

the medium. It is solved under prescribed initial, contact 

and boundary conditions to distinguish the particular 

solution of the PDE, corresponding to a particular problem, 

from the general solution. 

In static problems, which are of prime interest to our 

theme, there is no need in initial conditions: we use only 

contact and boundary conditions. The contact conditions 

include constitutive equations for a contact element. 

(In the simplest case of a perfect contact, the constitutive 

equations express continuity of tractions and displacements 

through the contact). 

Suppose we have found the solution of a problem and 

know the equilibrium state. Now we want to know if the 

state is stable or unstable. 

A rigorous analysis of stability requires strict 

definitions of what is assumed to be a stable or unstable 

state. Naturally, the definition differs in different problems. 

Still, the general feature is that instability is always 

induced by some source(s) of non-linearity. The problem 

of stability does not exist for a linear system. Thus we need 

to inspect the possible sources of nonlinearity. 

For a massive body of hard rock, in contrast with 

slender bodies, we may neglect non-linear terms in 

equilibrium and kinematics equations. Thus the only 

candidates to be the sources of instability remain non-linear 

constitutive equations for volume or/and contact elements. 

These equations are obtained in physical experiments with 

rock volumes and contacts. 

Figure 2 presents typical non-linear diagrams for a 

volume element obtained by using a rigid testing machine. 

 

Figure 2. Complete diagrams for a volume element 

Of importance is that the diagrams have descending 

parts, corresponding to so-called softening behaviour. 

As known from the pioneering work by Cook
1965b

, under 

some conditions, softening becomes the source of 
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instability with the energy excess transformed into kinetic 

energy of fragments of fractured rock. Note that from the 

plasticity theory (e.g. Kachanov
2004

), we know that such 

kind of instability cannot occur for linear elasticity and 

hardening that is for deformation on ascending parts of 

diagrams. 

Similarly Figure 3 presents typical non-linear shear 

traction-shear displacement discontinuity (DD) diagrams 

for a contact (surface) element. They also have descending 

(softening) parts. Again they may cause dynamic instability 

(see, e.g. Linkov
1994

). 

 

Figure 3. Complete diagrams for a contact element 

Now we need to decide which of the two types of 

softening or both of them should be taken into account 

when modeling a seismic event? Actually, modern 

numerical techniques may account for the both types. Still 

the surface type looks dominating as concerns with 

seismicity in hard rock, at least. As wrote Napier
2001

: 

“The fundamental 'building block' of material failure can 

then be considered to be a 'crack element' rather than a 

'particle'”. Furthermore, even volumetric softening of a 

pillar may be modeled by using the dependence between 

average displacements of its boundaries and average 

tractions on them (see, e.g. Linkov
1994

). Thus in the 

problem considered, it is reasonable to focus on surface 

(contact) softening. 

Constitutive Equations for Contact Interaction 

Consider an element of rock surfaces in contact. 

Denote n  the normal to the element, 
  the traction 

vector on that side of the contact, with respect to which the 

normal is outward, 
u  is the vector of displacement on this 

side; 
  and 

u  the traction and displacement on the 

opposite side (Figure 4). 

Commonly, in problems involving contact instabilities, 

the contact is either not filled or it is filled with a material 

softer than embedding rock. Then we may neglect bending 

of a contact layer. This yields that (i) the contact interaction 

is characterized by the DD: 

,  uuu  (2.1) 

rather than by the average displacement )(2/1





uu  and 

(ii) the traction is continuous through the contact: 

  

. (2.2) 

 

Figure 4. Traction and DD vectors on a contact 

Therefore, the contact interaction is characterized by 

components of the vectors   and u . In the component 

form, the vector Equation (2.2) in 3D presents three scalar 

equations. Three other needed equations express the 

dependence between the traction and DD vectors: 

)( uF  . For irreversible deformations at a contact, 

this dependence should be incremental, connecting 

increments of the tractions with increments of the DD in a 

way similar to plasticity theory. Quite general equations of 

this type may be found elsewhere (e.g. Linkov
1994

). 

However, having in mind that the properties of a surface 

are uncertain and difficult to find, using a general 

description looks impractical. It is reasonable to employ 

as simple description as possible to shorten the list of 

uncertain parameters. For our purpose, we shall use the 

following simplifications. 

1) A flaw (crack), on which an event may occur, is closed 

if the traction does not reach the tensile strength nc0  or the 

initial shear strength C . For simplicity, the initial shear 

strength is prescribed by the Coulomb‟s law: 

  tan)(0 nC c  , (2.3) 

where   is the shear component of the traction, 0c  is the 

initial cohesion, 
 

is the surface friction angle. For 

illustrative purposes we assume that the shear traction 

vector is directed along a local coordinate axis in the plane 

of shear; thus we assume   positive. Then the shear DD 

is negative, and we shall use u to have a positive value. 

A compressive normal traction, like compressive stresses, 

is assumed negative. 

Thus we have: 

Cnn cu      and       if              ,0 0 . (2.4) 

2) When the traction reaches a limit value, there DD 

occur. 

For the tensile mode )( 0nn c , the DD are defined 

by the condition that the traction on an open crack becomes 

zero: 

0 . (2.5) 
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For the shear mode )( C   , the DD are defined 

in accordance with the piece-wise linear diagrams with 

descending parts shown in Figure 5: 














*

*

*0 uu-

uu-
          

 )(

   )(









 




cc

uM

C

cC , (2.6) 

where cM  is the shear softening modulus, 

cMccu /)( *0*   is the shear DD, corresponding to 

reaching the residual cohesion *c . 

 

Figure 5. Simplest diagrams for a shear 

softening contact 

The normal DD nu  for the shear mode may be 

prescribes as 

 tanuun   , (2.7) 

where  is the dilation angle. The minus sign in front of 

nu  serves to have a positive value. Recall that we assume 

u  to be negative and that under the accepted definition 

(2.1) of DD, a DD, corresponding to opening, is negative 

(see Figure 4). Commonly, we may neglect the dilation; 

then nu  = 0 for the shear mode. 

Equations (2.1) – (2.7) completely define the properties 

of a contact element. The dependence (2.6) accounts for 

softening what serves for modeling dynamic instability. 

Softening Contact in Rock. Instability 

We explain dynamic instability, caused by contact 

softening, by considering the simplest system shown in 

Figure 6a. It presents a specimen with the length l  and the 

elasticity modulus E . The specimen is cut under the angle 

  and it is loaded in a rigid testing machine. Two elastic 

parts of the specimen interact along the contact surface, for 

which shear deformation occurs in accordance with the 

diagram shown by the solid line in Figure 6b. 

The elastic parts represent an external (with respect to 

the softening contact) system, which accumulates elastic 

energy. Continuous deformation of the contact may become 

impossible when its shear strength is reached and softening 

starts. It is easy to show (Linkov
1994

) that unique solution 

of the problem exists only when the softening modulus cM  

is less that the shear rigidity SK  of the external system: 

Sc KM  . (2.8) 

Herein, the shear rigidity is evaluated per unit contact area; 

in the considered case  2cossin)/( lEKS  . 

 

Figure 6. Example of instability caused 

by contact softening 

If the inequality (2.8) is not satisfied, then we have 

either infinite number of solutions, corresponding to any 

point of the descending part when Sc KM  , or a jump to 

the residual strength when Sc KM  . The dashed line in 

Figure 6b shows the corresponding mutual deformation of 

elastic parts. The hatched area shows the energy excess 

(per unit area), accompanying the jump from the initial 

shear strength to its residual value. Thus when Sc KM  , 

we have dynamic instability. 

The case Sc KM   is intermediate between stable 

deformation and dynamic jump. In this case, the elastic 

energy release equals to the energy consumption at the 

softening interface. Although the energy excess is zero, 

we shall relate this case to instability because the solution 

losses uniqueness and whatever small exceeding of cM  

over SK  results in a dynamic event. Thus if the shear 

strength is reached, the state is unstable and jump to the 

residual strength occurs when 

Sc KM  . (2.9) 

Otherwise, the state is stable. 

From the general theory of dynamic instability 

(Linkov
1987

, see also Linkov
1994, 1997

) it follows that 

applicability of the simple conditions of stability (2.8) and 

instability (2.9) in terms of the elastic rigidity and the 

softening modulus is quite limited. In general, we need 

to use conditions in terms of energy excess on virtual 

displacements. Nevertheless, the simplicity of the 

conditions (2.8), (2.9) is very attractive. It appears that it is 

possible to apply them to modeling seismic events. 

Specifically, they are applicable to crack-like flaws in 

elastic rock when the shear rigidity SK  of the external 

system is properly defined. 

Rigidity of a Crack-like Flaw 

Consider, for certainty, a rectangular crack-like flaw 

with the minimal size a  and the other side b  )( ab   in 
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elastic rocks with the elasticity modulus E  and the 

Poisson‟s ratio v  (Figure 7). We use the local coordinate 

system with the axis 1x  normal to the flaw plane, 2x  and 

3x  in the plane. The 2x -axis is directed along the long side 

of the rectangle, the 3x -axis is along the short side. The 

flaw sizes are small as compared with the sizes of openings, 

faults and other structural elements of a considered region. 

Then the total influence of these disturbing factors and 

stresses at infinity is incorporated in the total traction t , 

induced at the location of the flaw on its surface. 

 

 

Figure 7. A rectangular flaw in elastic rock 

It is easy to solve numerically a 3D problem for a plane 

crack of an arbitrary configuration in an infinite elastic 

region under prescribed traction at the crack surface 

(e.g. Linkov et al.
1997

). From the solution we can find the 

dependence between the average traction vector  and 

the average DD vector u : 

 tuK , (2.10) 

where K  is a matrix with known coefficients; it has the 

meaning of average (per unit area) rigidity matrix. In 

particular, for a rectangular crack in isotropic rock, by 

symmetry, the rigidity matrix is diagonal. Its diagonal 

coefficients 1K , 2K  and 3K may be written as: 

a

kE
K

i

i 21 
 , (2.11) 

where the dimensionless coefficients ik  ( i  = 1, 2, 3) 

depend on the ratio ab / ; besides the coefficients 2k  and 

3k  depend on the Poisson‟s ratio. 

Figure 8 presents the graphs of the coefficients ik  

as functions of ab /  for the Poisson‟s ratio v  = 0.25 

(Linkov
2006

). Note that in the limiting case of a plane-strain 

problem )/( ab , the coefficients found analytically 

are: /21 k , /22 k ,  /)1(23 k . From 

calculations it follows that to the accuracy of 3% the 

plain-strain conditions are acceptable when ab /  = 4. 

This implies that the coefficients 2k  and 3k differ by the 

factor 1  at most. Therefore, for simplicity, we may use 

their mean value 2/)( 32 kkk S  , which becomes the 

only characteristic of shear rigidity. (The bold line in 

Figure 8 gives the dependence of Sk  on the ratio ab / ). 

Then (2.11) becomes: 

a

kE
K

1

21
1 

 , 
a

kE
KKK

S

S 232
1 

 . (2.12) 

 

 

Figure 8. Rigidities as functions of b/a 

In view of (2.12), we may write the dependence (2.10) 

between the average DD and average tractions in terms of 

separated normal n , nu and shear  , u components: 

nnn tuK  1 ,   tuK S . (2.13) 

Equations (2.13) notably simplify analysis of the 

system “flaw – embedding rock”. The unified shear rigidity 

SK  makes the rectangular flaw isotropic in its response 

to shear, like it is for a circular flaw. By employing this 

simplification, from now on, we shall assume the local 

coordinate 2x  directed along the shear traction. 

Comment. The actual configuration of flaws in rock 

mass is uncertain. Thus there is no sense to distinguish 

between the shear rigidities 2K  and 3K and to exactly 

specify the Poisson‟s ratio. Moreover, as the shear rigidity 

SK  is compared with the shear softening modulus cM , 

which is even more uncertain, it is enough to use rough 

estimations. In particular, since the shear rigidity changes 

only 1.6-fold when the rectangle changes from a square 

)( ab   to an infinite strip ),/( ab  it is possible to set 

ab  . Then for v  = 0.25, the rigidities are: 

a

E
K 0.11  , 

a

E
K S 9.0 . (2.14) 

Note that the analytical solution for a circle of the 

radius 2/aR  , yields the normal rigidity aEK /95.01  ; 

the difference with the first of (2.14) is only 5%. Thus 

the configuration of a flaw does not influence the rigidity 

significantly. Roughly, the rigidity is defined by the 

minimal size of a flaw. Using a circular flaw simplifies also 

input data and estimations of the energy release. For these 

reasons, Salamon
1993

 seeded circular flaws. 



 

- 204 - RaSiM8 

Equilibrium and Instability 

of a Crack-like Flaw in Rock 

We are in a position to obtain an approximate solution 

for a softening crack-like flaw by equating the tractions 

and DD on its surface to those of elastic rock. Before the 

tensile or shear strength is reached nn ct 0(  , )Ct   , 

Equations (2.4) and (2.10) yield the obvious result: 

 t . 

After the tensile strength is reached )( 0nn ct  , 

Equations (2.5) and (2.10) give: 



 tKu 1
. (2.15) 

At last, if the shear strength is reached )( Ct   , 

joining the first of (2.6) and the second of (2.13) gives the 

system, defining the shear DD under softening: 

)(   uM cC  ,   tuK S . 

Its solution is: 

cS

C

MK

t
u






 




. (2.16) 

Recall that by the accepted agreement on signs, for a 

physically significant solution, it should be – u  > 0. 

Since the numerator in (2.16) is non-negative, this implies 

that a continuous solution exists only under the condition 

of (2.8) form: Sc KM  . If Sc KM  , there is no 

continuous solution: the system jumps to the state 

corresponding to the residual strength. We see that the 

condition (2.9) is the condition of dynamic instability for 

a flaw in elastic rock. 

For the final state after the jump, the second line in 

(2.6) and the second Equation in (2.13) yield: 

S

C

K

cct
u

)( *0 



 



. (2.17) 

Note that the r. h. s. in (2.17) is positive. 

Comment. Recall that the solutions (2.16), (2.17) are 

approximate because we have used tractions and DD 

averaged over a flaw. It is of interest to estimate the 

accuracy of such an approach. It can be done by using the 

results of the exact solution to the plain-strain problem for 

a straight shear-softening crack of the length a  in elastic 

rock (Belov and Linkov
1995

). From inspecting dimensions, 

it is obvious that the condition of dynamic instability has 

the form (2.9). The value of the rigidity, corresponding to 

the exact solution, is 
a

E
KS

1

1
675.0

2
 . Its comparison 

with the approximate value
a

E
KS

1

1

2
2 

 , obtained by 

averaging, shows that the error is 9.3%. Such an error looks 

acceptable when modeling a seismic event. 

Seismic Characteristics of a Single Event 

Consider a flaw with the normal n  in rock (Figure 7). 

Suppose that the tractions n  and   are such that the 

shear strength is reached. Then the flaw may experience 

softening in accordance with a diagram in Figure 5, 

corresponding to the current normal traction nn t . This 

diagram is shown by solid line in Figure 9. 

 

Figure 9. Diagrams of softening element 

and external system (embedding rock) 

We are interested in characteristics of the jump 

occurring when the instability condition, 

,Sc KM   

is met. Then the deformation of rock surfaces follows the 

diagram shown by the dashed line in Figure 9. The area 

between the diagrams represents the energy excess per unit 

area. Therefore, for the whole flaw area, equal to ab , the 

total elastic energy excess is: 

ab
M

K

K

cc
W

c

S

S













 1

)(

2

1
2

*0  . (2.18) 

Note that the total elastic energy release is 

ab
K

cc
W

S

r

2

*0 )(

2

1   , (2.19) 

while the total energy consumption on the softening surface 

is cC MabccW /)(2/1 2

*0   . Introduce the seismic 

efficiency factor, defined in seismology as 

rCreff WWWK /)(  , so that reffWKW  . Then Equation 

(2.18) implies that in the considered case the seismic 

efficiency is: 

c

S
eff

M

K
K 1 . (2.20) 

Depending on the softening modulus it may change 

from the unity for ideally brittle rock, considered by 

Salamon
1993

 )( CM , to zero at the threshold of 

instability SC KM  . 

We obtain a rough estimation of the seismic energy by 

using the second of Equations (2.14) for a square flaw: 

effKa
E

cc
W 3

2

*0 )(
56.0   . (2.21) 
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Equation (2.21) shows that the energy of an event is 

proportional to the cubed crack size a . The simple 

estimation (2.21) is useful in numerical simulation of 

seismicity. It serves for the choice of the average size of 

flaws, which define the average level of energy; the latter is 

available from seismic observations. 

The seismic shear Su , according Figure 9, is: 

S

S
K

cc
u

 *0 
 . (2.22) 

The tensor of seismic moment in the local coordinates 

of the flaw is: 

.

000

001

010

















 mM seism  

Herein, m  is the magnitude, defined as usual by the 

equation Sum S  , where   is the shear modulus 

)1(2   E , S  is the flaw area )( abS  . (Recall that 

we have assumed the local coordinate 2x  directed along the 

shear traction, so that the shear DD has the direction 

opposite to 2x  what explains the minus sign in front of m ). 

One nodal plane of an event is normal to the local axis 1x , 

another is normal to 2x . 

Usual tensor transformation gives the tensor of seismic 

moment in a global system of coordinates. For brevity, 

the value m  is also called the seismic moment when there 

might be no confusion. 

Using (2.22) yields: 

ab
K

cc
m

S

 *0 
 . (2.23) 

From (2.19) and (2.23), it follows that the energy 

release is proportional to the moment m : 

m
cc

Wr




2

*0 
 . 

The energy excess differs only by the seismic 

efficiency factor: 

effe mK
cc

W




2

*0 
 . 

Therefore, in rough estimations, assuming the seismic 

efficiency constant, the energy excess is proportional to 

the seismic moment. 

Summary for Modeling a Single Seismic Event 

We have seen that the essence of a seismic event is 

instability in the form of a jump. It occurs when the elastic 

energy release exceeds the energy consumption for 

softening deformation of a flaw. Therefore, when modeling 

a single event we need to account for: 

1) Elasticity, which provides the source of energy. 

2) Softening, which defines the energy consumption. 

Thus, 

Elasticity + Softening → Single seismic event 

This implies that when seeding many flaws, at which 

seismic events may occur, the minimal input data for 

a flaw are: 

1) Its location (three global coordinates of the flaw 

center). 

2) Orientation of the flaw plane (two coordinates of the 

unit normal to the plane; and, for a rectangular flaw, 

orientation of one of the sides in the plane). 

3) The size(s) of the flaw (two lengths of a rectangle, or 

one size for a square or circle). 

4) Mechanical properties of the flaw: its tensile nc0  and 

initial shear 0c  strength, friction angle ρ, residual cohesion 

*c , softening modulus cM  and dilation angle  ; in 

simplified models, one may set nc0 = 0, *c = 0,  = 0 

and/or consider ideally brittle contact )( cM . 

5) Elasticity modulus E  and Poisson‟s ratio ν of rock 

at the location of the flaw. 

The elastic properties of rock and minimal size of a 

flaw define the shear rigidity SK  of rock with respect to 

the flaw. It is found from the second of Equations (2.12) 

and Figure 8 for a rectangular flaw, or from the second of 

Equations (2.14) for a square or circular flaw with the 

radius aR  . 

The behavior of a flaw in rock depends on the tractions 

t  
induced on its surface by external stresses. The stresses 

are found by solving a boundary value problem for rock 

masses with openings, faults, inclusions, etc. under 

prescribed in-situ stresses. A common code of FEM, BEM, 

DEM and the like may serve to find the induced stresses. 

A flaw is closed and it does not influence the rock state 

when neither tensile, nor shear strength is reached. 

A flaw opens when the normal traction becomes equal 

or exceeds its tensile strength )( 0nn ct  ; then the flaw 

obtains the DD defined by (2.15). 

A flaw experiences shear deformation when its shear 

strength is reached )( Ct   . In this case, there are two 

options: 

1) There is no seismic event if the stability condition (2.8) 

is met )( Sc KM  . Then the shear DD is found from 

(2.16); the normal DD is defined by (2.7); when setting the 

dilation angle   zero, the normal DD is zero. 

2) A seismic event (jump) occurs if the instability 

condition (2.9) is met )( Sc KM  . Then the characteristics 

of the event (energy release, energy excess, seismic 
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efficiency, seismic shear, seismic moment, etc.) are found 

by using Equations (2.18) – (2.23). 

TIME EFFECTS 

Multiple Events: Seismicity 

Time effects are obviously present in rock. “The first 

law of rock mechanics is that holes tend to close up” 

(saying of “wise old engineer” quoted by van der 

Merwe
1995

). As concerns with seismic events, they are 

distributed in time; obviously time effects control intervals 

between individual events. They lead also to aseismic 

deformations. Thus to consider many seismic events and to 

include aseismic events, we need to compliment the two 

discussed fundamental factors (elasticity and softening) 

with time. A multiplicity of seismic events is called 

seismicity. Therefore, 

Elasticity + Softening + Time → Seismicity 

For events of small magnitude, the term 

microseismicity is commonly used; dynamic events in 

a loaded specimen are called acoustic emission. We assume 

these terms equivalent. 

External Time 

It looks reasonable to distinguish two types of time 

processes: 

1) Those which run out of the source of an event and its 

close vicinity. 

2) Those which occur in the source and its close 

neighbourhood. 

The first group of processes is external, while the 

second is internal with respect to an event. 

Figure 10 presents examples of processes controlled 

by external time. They include a specimen loaded with 

stresses, which change in time in accordance with a 

prescribed loading path (Figure 10a); mining with changes 

of geometry planned by an engineer (Figure 10b). In these 

two cases the time is just a parameter defining changes 

in boundary conditions. The other two examples refer to oil 

(gas, heat) production (Figure 10c), where changes in the 

stressed state are defined by transient processes of fluid 

flow, and propagation of a hydraulic fracture (Figure 10d), 

which changes the stresses around it. 

Various conventional codes of FEM, BEM, DEM, etc. 

may serve to numerically trace the change of stresses in the 

external time. We assume that a numerical code to simulate 

these changes is available. From now on we focus on the 

„internal time‟. 

Internal Time. Elasticity-Softening-Creep (ESC) Model 

There is obvious evidence of internal time present in 

seismicity: after a strong excitation of rock, such as an 

earthquake, or rockburst, or blast, a cascade of seismic 

events occurs during some interval of time. The events 

cease in time approximately exponentially, what in 

seismology is called the Omori‟s law. The questions are: 

how to account for the internal time in the simplest way and 

how to model aseismic events? 

 

Figure 10. Examples of processes running 

in ‘external’ time 

We may follow the common path of solid mechanics to 

get an answer. As known, the simplest description, 

explicitly accounting for the time, is the Newton‟s viscosity 

law, which linearly connects a force (stress) with a 

kinematic quantity (velocity, strain rate, DD). In schemes, 

presenting model behavior, it is shown by a dash-pot 

(Figure 11a). 

 

Figure 11. Using a dash-pot (a) to simulate viscous 

deformation of a volume (b) or surface (c) element 

In constitutive equations for a volume element 

(Figure 11b), the dependence between a time-dependent 

part of the stress 
c

ij  and the strain rate 
c

ij  is 
c

ij

c

ij    with the coefficient   having the dimension of 

dynamic viscosity ][  = stress/strain rate = stress·time. 

For a contact element (Figure 11c), time-depending shear 

traction 
c

 linearly depends on the velocity 
cu  of shear 

DD: 
cc u    with the coefficient   having the 

dimension ][  = stress/velocity = stress·time/length. The 

dot over a symbol denotes the derivative with respect to 

time. 

There are numerous option for including this model 

into constitutive equations for embedding rock (volumes) 

or/and interfaces (surfaces). When choosing between them, 

it is reasonable to have in mind that a dash-pot responds 

absolutely rigidly to instant changes. Actually its instant 
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rigidity is infinite. Specifically, its reaction is absolutely 

rigid in a jump, which corresponds to dynamic instability 

associated with a seismic event. Consequently, there is no 

sense to include a viscous element in parallel with an 

elastic element when modeling external system, represented 

by external rock (Figure 12a). Such a system will not 

provide elastic energy instantly. It is also senseless to 

include a viscous element in parallel with a softening 

element modeling the behavior of a crack-like flaw 

(Figure 12b). Such a system is unable to consume energy in 

a jump. 

 

Figure 12. Schemes with parallel inclusion 

of a viscous element 

We conclude that the reasonable way of accounting for 

internal time is to include a viscous element in series with 

an elastic element representing an external system 

(Figure 13a), or/and with a softening element shown in 

Figure 13b. 

 

Figure 13. Schemes with inclusion 

of a viscous element in series 

In the simplest softening element shown in Figure 5, 

we have neglected the elastic DD on the flaw surface. 

Consequently, to have a time scale, it is reasonable to use 

the viscous element in frames of the Kelvin-Voight model. 

Then we obtain the simplest model (Figure 14), which 

exhibits instant softening and has a characteristic time rt . 

We call this model the Elasticity-Softening-Creep (ESC) 

model, because it includes the elastic element with the 

rigidity lE , softening element with the softening 

modulus cM  and viscous (creeping) element with the 

viscosity  . The characteristic time of the model is the 

retardation time: 

l

r
E

t


 . (3.1) 

 

 

Figure 14. Elasticity-Softening-Creep model 

The instant reaction of the model is that of the 

softening element with the instant softening modulus cM . 

The long term reaction is that of a softening element with 

the long-term softening modulus M , defined by equation: 

lc EMM

111




. (3.2) 

The ESC-model is the simplest extension of the 

standard linear body. It reduces to the standard body when 

excluding softening of the upper element in Figure 14, 

so that it becomes elastic. Below we shall use the opposite 

option and neglect elastic deformation of the upper element. 

Surely, non-Newtonian viscous element may be used when 

appropriate. 

ESC-model, being not much more complicated than 

models used to the date, it provides significant advantages. 

It allows us to account for rock brittleness, to distinguish 

between stable and unstable states, to evaluate energy 

consumption and to follow damping or accelerating 

aseismic deformations. 

Constitutive Equations for ESC-Model 

We shall use the simplified diagrams of Figure 5 and 

their analytical form (2.6). The corresponding ESC-model 

is shown in Figure 15. 

The properties of the model are as follows. Until the 

tensile or shear strength is reached, we assume that a flaw 

is closed and DD at its surface are zero. If the tensile 

strength is reached, the reaction is instant, thus the flaw 

opens and the traction turns to zero (Equation 2.5). If the 

shear strength is reached, then the upper element of the 
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ESC-model behaves in accordance with Equations (2.6). 

We rewrite them with the subscript „u‟ at the shear DD 

to mark that the DD refer to the upper element in Figure 15: 














*

*

*0 uu-

uu-
          

 )(

   )(

u

u

C

ucC

cc

uM









 


 . (3.3) 

 

 

Figure 15. ESC-model (no elastic DD prior softening) 

For the lower Kelvin-Voight element, we have: 

)()(
lll uuE    , (3.4) 

where the subscript l  marks that the DD refers to the lower 

element. The traction is the same in the upper and lower 

element because they are joined in series. For the same 

reason, the total DD is the sum: 

)()(
lll uuE    . (3.5) 

The total normal DD may correspond to dilation in 

accordance with (2.7). 

Joined System of ESC-Surface Element and Rock 

We join Equations (2.13) of the external system with 

Equations (3.3) – (3.5) for a flaw described by the 

ESC-model. If neither tensile nor shear strength is reached, 

the flaw is closed; its DD are zero. If the tensile strength 

is reached, the DD are defined by Equation (2.15). If the 

shear strength is reached )( Ct   , the joined system 

yields the ordinary differential equation (ODE): 

)()(
)(

C

rr

t
t

u
tdt

ud


 





 , (3.6) 

where rt  is the retardation time defined by (3.1), 

1/

1/








cS

S

MK

MK
 , 

1/

/1






cS MK

M
 , (3.7) 

M  is the long-term softening modulus defined by (3.2); 

note that (3.2) implies inequality cMM  . When deriving 

the ODE (3.6) we neglected the viscous deformation, which 

occurred long before the current time, and the time 

derivative of the induced traction. The agreements on the 

signs of shear DD and shear traction are those accepted 

above. 

The ODE (3.6) is solved under the initial condition 

)( 0tu  = 0, where 0t  is the moment when the shear 

strength is exceeded. We shall not write down the obvious 

solution. Rather we discuss the general solution of a 

homogeneous ODE, corresponding to (3.6), because it 

defines general features of the mechanical system. The 

general solution, including an arbitrary constant C , is: 
















r

g
t

t
Ctu exp)( . (3.8) 

From (3.8) it is clear that a solution exponentially 

grows (decays) when   < 0 (  > 0). The sign of 

depends on the signs of numerator and denominator in the 

first of (3.7). This implies that there are three types 

of shear motion depending on particular values of SK , 

cM  and M : 

1) Instant instability (jump) occurs when Sc KM  . 

Then we have a seismic event with characteristics 

discussed in the previous subsection. 

Otherwise, the state is stable ( Sc KM  ). In this case, 

the deformation occurs in aseismic (without energy excess) 

form. Although it is continuous in time, there appear two 

additional options (we do not consider the exclusive case 

Sc KM  , which is not of practical interest): 

2) Decaying aseismic motion occurs if SKM  . 

3) Accelerating aseismic motion occurs if SKM  . 

We see that the ESC-model describes both seismic and 

aseismic events. For the latter, the motion may be very fast 

when the instant softening modulus cM  is close to the 

rigidity SK :  , when Sc KM  . This explains 

why intervals between observed seismic events are 

different; the difference may be of several orders. The fast 

aseismic motion explains also so-called silent earthquakes 

(see, e.g. Linder et al.
1996

, Dragert et al.
2001

 and 

Kawasaki
2004

). 

From the analysis it appears that, actually, we need 

to prescribe only three parameters rt , Sc KM /  and 

SKM /  to model the deformation of a flaw after its 

initiation by external shear traction. 

Aseismic Behavior 

and Characteristics of a Single Aseismic Event 

We have seen that aseismic motion at flaw surfaces 

occurs when the stability condition Sc KM  is met. The 

motion runs with acceleration if the long-term modulus 

exceeds the rock rigidity )( SKM  . Otherwise, it decays 

in time. In the both cases, if the residual shear strength is 

reached in the course of motion, we have for the final shear 

DD: 
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S
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u
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
. (3.9) 

The time ft of reaching the residual shear strength is: 






































 u

u

MM

KMt
t

c

Scr
f

*1
/1

/1
ln


, (3.10) 

where )/()(   MKtu SC  , 
 MMuu c /** , 

cMccu /)( *0*   . Equations (3.9) and (3.10) refer to 

both accelerating and decaying motion. 

MODELING OF SEISMICITY. INPUT DATA 

General Considerations 

With the ESC-model, we can simulate a single seismic 

or aseismic event arising at a flaw with prescribed position 

of its center and orientation of its plane. It is assumed 

that there is a computer code, which provides stresses at 

the flaw location as a function of external time. Then if at 

some instant the tensile or shear strength is reached, we 

have an event (seismic or aseismic) with known time, 

location, orientation, seismic and aseismic DD and other 

characteristics discussed above. 

Obviously, when having many flaws, we simulate 

events distributed in space and time. Therefore, to model 

seismicity, it is sufficient to seed a set of flaws in an area 

of interest and to check the state of each of them on steps of 

external time. 

There are two comments to this general scheme. 

Firstly, imagine that the flaws are seeded in a natural state 

of rock, which is not disturbed by mining or oil (gas) 

production. We may expect that in situ tractions at some of 

the flaws exceed the shear strength. Then, in accordance 

with the discussion, there should be DD at such flaws. 

However, these DD may be referred to times long before 

the current time. Clearly these DD should be excluded from 

the totality of seeded events. In a computer code, it has to 

be done by a special subroutine checking seeded flaws 

under in situ stresses and excluding those initiated by these 

stresses. We shall call this subroutine “ExclusInSitu”. 

Secondly, an event arising at a flaw on a time step leads 

to DD on the flaw. The DD notably change the stresses 

around the flaw. The change of stresses may be strong 

enough to initiate some of the neighbouring flaws. Each of 

the initiated flaws, in its turn, experiences DD, influences 

its neighbours and may initiate new flaws. And so on, till 

new flaws are initiated. In this way, there may arise chains 

of seismic and aseismic events. 

Obviously, if the density of flaws is small, they 

practically do not interact. Then there are no chains of the 

type. On the other hand, if the density is too high, there 

arises a chain reaction, involving practically all the flaws. 

The case intermediate between the two is of major interest 

for simulation of seismicity. In this case, we may expect 

that it will be possible to model the dependence of Omori 

type. Therefore, it is of value to find the range of flaw 

density, in which a chain reaction does not arise while the 

interaction of flaws is sufficient to produce successive 

cascades of events. Below we shall define the range. 

Deterministic Input Data 

We have assumed that a computer code is available for 

calculating stresses at each point of a region as functions 

of the external time. The input data of the code commonly 

contain: 

1) Initial geometry of a problem; specifically, for a 

mining problem, we prescribe the depth, dip angle, strike 

angle, contours of pillars and openings. 

2) Physical properties of a medium. 

3) In situ stresses. 

4) Some additional information for a particular problem, 

such as pumping rate and fluid viscosity for hydraulic 

fracturing, pore pressure and permeability of rock for oil 

(gas, heat) production, etc. 

All these data are prescribed in the same way as in 

cases when a code is used without simulation of seismicity. 

Normally these data are deterministic. 

The influence of the external time is also deterministic. 

Specifically, in mining problems, we plan the change of 

mining geometry in time; in hydraulic fracturing, we follow 

the fracture propagation and the change of the net-pressure 

in time steps of calculations. 

Briefly, we assume deterministic all what concerns 

with the performance of a conventional code when there is 

no simulation of seismicity. The following discussion 

entirely refers to parameters specific for modeling seismic 

and aseismic events. They include geometric input data on 

positions and orientations of randomly seeded flaws, data 

on flaw sizes and density, data on mechanical properties of 

flaws. In the next subsection we specify prescribing these 

data. In a computer code, a special subroutine produces 

these data. We call it “FlawInput”. 

Input Data on Position and Orientation of Seeded Flaws 

We seed flaws in a parallelepiped with the sides 

parallel to the global coordinates, with the sizes 1X , 2X  

3X
 
and volume 321 XXXV  . The sizes notably (three- to 

five-fold) exceed those of the region of interest, where we 

want to model seismic and aseismic events. 

The uniform random distribution is used for: 

1) Three coordinates of the flaw center, changing in the 

intervals ]2/,2/[ 11 XX , ]2/,2/[ 22 XX
 

and 

]2/,2/[ 33 XX  for the global coordinates 1x , 2x  and 3x , 

respectively. 

2) Dip angle of a flaw changing from 0 to π/2. 
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3) Strike angle changing from 0 to 2π. 

4) Rotation angle in the dip plane, changing from 0 to π 

(for a rectangular flaw). 

5) Ratio ab / , changing from 1 to 3 (for a rectangular 

flaw). 

In general the total number of geometric parameters is 

seven. For square flaws )( ba  , the item )(v  is not used; 

the number of parameters is six. For circular flaws )( Ra  , 

the item )(iv  is not used, as well; the number of parameters 

is five. 

For the size a  of a flaw, we use the exponential 

distribution of the probability density: 











l

a

l
aP exp

1
)( , (4.1) 

where l  is the average length of the smallest side. The 

average length l  and the total number N  of the flaws are 

prescribed as explained below. 

Input Data on Mechanical Properties of Seeded Flaws 

Shear rigidity SK . Having the input data on the rock 

elasticity modulus and the sizes of flaws, we find the shear 

rigidity from the second Equation (2.12) or (2.14). 

Tensile strength nc0 . Commonly we may assume that 

the tensile strength is zero: nc0  = 0. 

Shear strength 0c , *c ,  . The shear strength is 

characterized by the initial cohesion 0c , residual cohesion 

*c and the contact friction angle  . As follows from 

Equations (2.18), (2.19), (2.22) and (2.23), actually we need 

the difference  *0 cc  , rather than 0c and *c  separately. 

Therefore, we may set *c  = 0. To reduce the number of 

quite uncertain parameters, like 0c  and  , we may 

prescribe the latter two quantities by their average values. 

In particular, for hard rocks, according to Salamon
1993

, 

the initial cohesion changes from 0.02 to 4.3 MPa with the 

statistically mean value 0c  = 2.5; the friction coefficient 

tanρ changes from 0.5 to 1 with the mean friction angle 

 = 31
0
. When high confining pressure prevents shear, the 

number of initiated events may be increased by decreasing 

the friction angle to 20° or even to 10°. 

Shear softening modulus cM . For the prescribed shear 

rigidity SK , prescribing the softening modulus is 

equivalent to that of the ratio Sc KM / . The latter defines 

the instability condition and seismic efficiency. As both 

cM  and SK  decrease with growing crack size, they are 

partly correlated. Still their ratio is a random quantity and 

quite uncertain. We may prescribe the ratio Sc KM /  as a 

sum of the determined (mean) part Ma  and the random part

MM fb , uniformly distributed on the interval [ Mb , Mb ]: 

MMM

S

c
fba

K

M
 , (4.2) 

where MM ba  , Mf  is a random value uniformly 

distributed on the interval [-1, 1]. The values of Ma  and 

Mb in (4.2) may be prescribed by using the following 

considerations. 

If MM ba   ≥ 1, then Sc KM /  ≥ 1; hence in 

accordance with the instability condition (2.9), all the 

modeled events will be seismic. In modeling, this choice 

serves to neglect aseismic events. 

If MM ba   < 1, then Sc KM /  < 1; hence all the 

modeled events will be aseismic. In modeling, this choice 

serves to model only aseismic events. 

If MM ba 1 , the ratio of numbers of modeled 

seismic events SN  to that of aseismic events AN  is: 

)1(

)1(






MM

MM

A

S

ab

ab

N

N
. (4.3) 

Thus, by an appropriate choice of Ma  and Mb , one 

may adjust the ratio of seismic to aseismic deformation 

to data of observations. Note that when Ma  = 1, 

Equation (4.3) implies that the number of seismic 

events equals to the number of aseismic events for any 

value of Mb . 

The mean seismic efficiency of seismic events is: 

1

1






MM

MM
eff

ba

ba
K . (4.4) 

Therefore, one may choose the parameters Ma  and Mb

to prescribe the mean value of effK . 

Internal time scale rt . In the ESC-model, the time 

scale is defined by the only combination with the time 

dimension, which is the retardation time lr Et /  of the 

Kelvin-Voight element. Both the viscosity   and rigidity 

lE  of this element are perhaps the most uncertain for rock. 

Meanwhile, the internal time is no more than a parameter 

ordering events in a sequence. Note also that according 

to (3.10), the mean time of aseismic events is characterized 

by /rt  rather than rt . Still, as in many cases the mean 

value of   is of order of unity, the retardation time is 

typical for the majority of aseismic events. 

The contact viscosity   being uncertain, the time scale 

is conditional. Clearly, it should be less than a typical time 

step of the external time. It may be roughly estimated if a 

dependence of Omori type is available from observations. 

Suppose we have dependence of the number of seismic 

events, occurred in equal time intervals after a strong 

excitation of rock (Figure 16a). The dependence is 

approximated by decaying exponent (Figure 16b) as 

)/exp(0 OS ttNN  . (4.5) 

Then we may associate the retardation time with the 

characteristic time Ot  of the Omori dependence (4.5). 
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Figure 16. Dependence of Omori type for the number 

of seismic events after excitation of rock 

Rigidity of Kelvin-Voight element lE . It can be shown 

(Linkov
2006

) that for the distribution (3.12), the mean 

portion of accelerating events in the total number of all 

aseismic events is Mlc bEM /)/(2/1 if either (i) 

MM ba 1  and 1/  lcM EMa , or (ii) Ma  > 1 and 

MlcM bEMa  /1 . In these cases we may prescribe the 

rigidity lE  by choosing its value, which provides a needed 

portion of accelerating events. 

Mean length of flaws l . The mean length l  of seeded 

flaws may be defined via the expected level of energy lW  

of events. Then, by using la   in (2.21), we obtain: 

3 2

*0

3

/)(

21.1

EccK

W
l

eff

l

 
 . (4.6) 

Note that the expression under the cubic root in (4.6) 

has the order of elastic energy released from a unit volume 

of rock under the stress drop  *0 cc  . 

Flaw density   and the number N  of seeded flaws. 

We have mentioned that the dominant factor causing chains 

of events is flaw interaction. The interaction is significant at 

distances less or comparable with the flaw minimal size .a  

Therefore, in problems concerning with modeling 

seismicity it is reasonable to introduce the flaw density as 

the ratio of the mean length l  of flaws to the mean distance 

L  between them: 

L

l
 . (4.7) 

In a 3D volume V  with uniform distribution of N  

flaws, the mean distance between their centers is: 

3

N

V
L  . (4.8) 

From (4.7) and (4.8) we obtain the total number of 

flaws to be seeded in a volume V  to have the density  : 

3

N

V
L  . (4.9) 

When using (4.9) we need to specify the range of the 

density, in which interaction of flaws is strong enough to 

produce chains of events while it is not too strong to lead 

to a chain reaction. For 3D problems, the range was 

established by numerical experiments (Linkov
2006

). It is: 

75.014.0  . (4.10) 

When the density is below the lower threshold, there is 

actually no flaw interaction. Consequently, there are no 

chains of events. When the density is above the upper 

threshold, the interaction becomes so strong that there arise 

chain reaction involving almost all the seeded flaws into 

deformation. 

A particular value of the density in the range (4.10) 

may be chosen from additional considerations. Consider 

rare strong events with the energy strW  notably, say 

200-fold, exceeding the mean energy lW . The number strN
 

of such strong events is first units, say strN  = 1. Then 

assuming the number of seismic events proportional to the 

number of flaws capable to produce events of prescribed 

energy, we have from (2.21) and (4.1) the expected number 

SN  of all seismic events: 














 3exp

l

str

strS
W

W
NN . (4.11) 

Naturally, the total number of seeded flaws should be 

at least an order greater than the expected number of 

seismic events. Denote Nk  the fraction of flaws, which 

produce seismic events, so that S

N

N
k

N
1

 . When using 

(4.11), we obtain the estimation: 














 3exp

1

l

str

str

N W

W
N

k
N . (4.12) 

When having N , Equation (3.19) defines 3 /VNl . 

The found   should be within the range (4.10). 

For a particular problem, the number Nk  is not known 

in advance. Consequently, there might be need to perform a 

series of calibrating runs with a computer code. They start 

from a guess regarding Nk . Then for a prescribed ratio 

lstr WW / , the value of N  becomes available from (4.12) 

and (4.9) serves to find the density  . (The latter should be 

within the range (4.10)). The first run provides the portion 

Nk  of flaws, which produce seismic events. The found Nk  

serves for the next run and so on. If at some step the density 

is outside the range (4.10), we need to repeat calibration 

by taking another value of strN , say 0.1, or 2, or 5. 

Another, although limited option, consists in changing the 

volume V  of seeded flaws. Finally we obtain the needed 

values of N  and  . 

Comment. Calibration is notably simplified when 

having the dependence frequency-magnitude of Gutenberg-

Righter type obtained from field observations. We shall 

discuss this dependence below in Section “Output Data”. 
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INITIALIZATION AND TIME STEPS 

Initialization 

The generated input data on flaws are firstly analysed 

on the initialisation step of calculations. As mentioned, 

it consists in considering in situ state of rock and exclusion 

those of seeded flaws, for which in situ tractions exceed the 

tensile or shear strength of a flaw. It is done by a 

subroutine, which we have called “ExclusInSitu”. It 

presents a cycle over N  seeded flaws with checking for 

each of them if its strength is exceeded. These flaws are 

excluded from further calculation and the number N  is 

respectively diminished. The remaining flaws are assumed 

active in the sense that they are closed and able to 

experience seismic or aseismic DD under induced tractions. 

Steps in External Time 

After the initialisation, the code starts calculations in a 

cycle of external time steps. At the beginning of a step, 

a conventional (basic) code calculates tractions at the 

location of each active flaw. For brevity, we call them 

„conventional tractions‟. Besides those, there arise 

additional tractions caused by the DD on flaws, which have 

been activated on previous steps. We call their sum at each 

of the current active flaws „flaw-tractions‟. At the 

beginning of the first step, the flaw tractions are zero. 

We neglect the back influence of the flaw-stresses on 

the conventional stresses. This serves us to use the basic 

code unchanged. Normally, it does not lead to notable loss 

of accuracy. Still, if there is need, the back influence may 

be accounted for by an iteration included into the basis 

code. 

At each of the time steps, we perform calculations in 

a similar way. It is done by a subroutine, which we call 

“SeismTimeStep”. 

Consider a typical time step. For it, we have 

conventional and flaw-tractions at flaws, which are active 

to the beginning of the step. Calculations always start from 

the zero-stage and may include a number of stages 

depending if there arise aseismic events. Specifically, if 

there appear aseismic events on the zero stage, it is 

followed with the fist stage. If on the first stage there 

appear new aseismic events, it is followed with the second 

stage, and so on until aseismic events cease to appear. 

The calculations are performed as follows. 

Zero-stage. At each active flaw, we add the flaw-

tractions to the conventional tractions and check if the 

summary tractions exceed the tensile or shear strength. 

If the strength is exceeded, we calculate the DD arising 

at the flaw by using Equation (2.15) for the tensile mode, 

and (2.17) for the shear mode. Besides we check if the 

corresponding event is seismic or aseismic. 

Then common quadratures of the H-BEM provide 

stresses caused by these DD at any point of a medium 

(see, e.g., Linkov et al.
1997

). The calculation is performed 

by a subroutine, which we call “TracFlaw3D”. As a result, 

we obtain additional tractions caused by the DD arisen at 

an activated flaw at locations of other active flaws. The 

additional tractions are summed and stored separately for 

seismic and aseismic events, which have appeared on the 

zero-stage. 

After checking all the active flaws, those of them, 

which have produced seismic events, are excluded from 

active and declared passive flaws. The sum of their 

additional tractions is immediately added to flaw-tractions. 

Then we start the next cycle, repeating the same 

calculations for the new set of active flaws and with 

updated flaw-tractions. 

The cycles are repeated until new seismic events cease 

to appear. Then we turn to the flaws, which produced 

aseismic events. Now we exclude them from active flaws, 

declare them passive and add the sum of tractions induced 

by them to flaw-tractions. The stage is over. 

First and following stages. The new sets of active flaws 

and flaw-tractions are used in the same way as that 

described for the zero-stage. If there arise new seismic 

events, we consider them appeared after those, which have 

been simulated on the previous stage. The time lag is 

assumed to be equal to the characteristic time of aseismic 

events. In this case, the Omori-type dependence may be 

modelled. 

The stages are repeated until new aseismic events cease 

to appear. Then the current time step is over, and we may 

start the next step of external time. 

Saved Information 

In time steps, a computer code saves data on each 

event, seismic or aseismic, simulated. The information on 

an event includes: 

1) Its number in the numeration of events in the sequence 

of their arising; the number of the flaw (in initial 

numeration of the flaws), on which it appeared; the input 

data for the flaw gives location of the event, orientation of 

its plane and prescribed mechanical properties. 

2) The time step, at which the event is simulated. 

3) The type of the event, seismic or aseismic. For a 

seismic event, its mode, tensile or shear. For an aseismic 

event, its character, accelerating or damping. 

4) The stage within the time step, on which the event 

occurred. 

5) The cycle (for a seismic event) within the stage, on 

which the event occurred. 

6) Characteristics of a seismic or aseismic event, 

described in previous sections. 

These data are sorted and analysed by output 

subroutines. 
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OUTPUT DATA 

General Considerations 

Simulation of events notably extends data on a rock 

mass state. In addition to common mechanical data on 

stresses, strains and displacements, provided by a 

conventional code, we obtain data on seismic and aseismic 

events caused by changes of stresses. These data are similar 

to those observed in mines or around a hydraulic fracture, 

or oil (gas, heat) production well. Specifically, we obtain 

data on temporal and spatial distributions of events. For 

each simulated seismic event, we have its mode (tensile or 

shear), coordinates of its source, orientation of the plane, 

nodal planes, DD, energy, seismic moment, seismic 

efficiency, stress drop and seismic shear. For each aseismic 

event, we have its type (accelerating or damping), time and 

stage of its occurrence, characteristic duration, stress drop 

and final shear DD. What is of special significance, in 

contrast with observed seismicity, for any event, we exactly 

know the mechanical state, at which the event occurred. 

These data on events, placed in output files, undergo 

statistical processing. The latter may include building the 

tallies of the listed output characteristics; graphical plotting 

of Gutenberg-Righter and Omori dependences; delineation 

of regions of seismicity concentration such as pillars, edges 

of seams, moving front of a propagating hydraulic fracture, 

etc. This is done by postprocessor subroutines, which we 

assume joined in a single subroutine, called “FlawOutput”. 

Consider some of post processing actions applied to mining 

and hydraulic fracturing. 

Frequency-Magnitude Dependence 

The frequency-magnitude dependence presents 

logarithm of the number WN  of seismic events with the 

magnitude exceeding Wm . According to Salamon
1993

, the 

magnitude of a seismic event in Gutenberg-Righter scale is 

connected with the energy W  measured in MJ , as: 

)2.1(log3/2  WmW . (6.1) 

A typical graph of the frequency-magnitude 

dependence is shown in Figure 17 by the solid line. It is 

obtained when simulating seismicity in a deep gold mine 

of South Africa (Linkov
2006

). The simulation is performed 

for mining conditions similar to those, for which 

summarised data of seismic observations are available (data 

by Anderson reproduces by Napier
2001

). The dashed line in 

Figure 17 shows the curve for observed events. The 

agreement looks impressive. 

Note that in mining practice there are actually no 

events with the magnitude exceeding 2. This explains the 

drop of the curve near Wm  = 1.5. On the other hand, there 

are very many events with small magnitude Wm(  < 0), 

which are not accounted for in earth seismology. This 

explains close to horizontal part of the curves at small 

magnitudes. The average slope of the curve is close to -0.5. 

It is in contrast with the earthquake observations, for which 

the Gutenberg-Righter dependence is close to a straight line 

with the slope -1. 

 

Figure 17. Dependences of Gutenberg-Righter type 

For simulated seismicity, accompanying hydraulic 

fractures, the frequency-magnitude dependence is similar 

to that shown in Figure 17, but the magnitude of the 

strongest events is four orders less (Dobroskok and 

Linkov
2008

). It is because the net-pressure, which causes the 

fracture propagation and defines the change of stresses, is 

two-three orders less than the stress change induced by 

mining in deep gold mines. 

Omori Dependence 

Numerical simulation of exponentially decreasing 

number of seismic events after a strong excitation, 

corresponding to the stope advance in time, has led to an 

unexpected result (Linkov
2005, 2006

). It appeared that to 

simulate the Omori dependence (Figure 16), it is necessary 

to seed at least two sets of flaws with different linear scales. 

One of them contains flaws having mean length of 

order of ten meters; the other is of the mining step (first 

meters). The Omori dependence arises as the influence of 

rare aseismic events, generated by large flaws of the first 

group, on small flaws of the second group, which generate 

the majority of seismic events. Figure 18 presents typical 

results obtained in this way for long-wall advance in three 

time steps. It shows the numbers of events at stages within 

each of the time steps. 

Joined Geomechanical 

and Seismic Modeling and Monitoring  

In the Introduction we have mentioned about the need 

and easy implementation of joined geomechanical and 

seismic modeling and monitoring. Figure 19 shows the 

distribution of projections of simulated seismic events to 

the horizontal mining plane when the long-wall mining 

advances 10 meters downward (along the 3x -direction). 

The solid line shows the contour of the mined area at the 

end of a mining step. Evidently, the events follow the 

change of the geometry. 
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Figure 18. Numbers of seismic events on stages 

within three time steps 

 

Figure 19. Projections of simulated seismic events 

to the mining plane 

The distribution of the events in the vertical cross-

section orthogonal to the mining line is shown in Figure 20. 

We may see that the simulated events group near the 

mining front. They are distributed in the roof and floor 

mostly beyond the wedge-like zone. 

 

Figure 20. Projections of simulated seismic events 

to the vertical plane orthogonal to the mining line 

Remarkably, almost no events occur in the seam just 

ahead of the mining front. The reason is that the shear 

stresses are small along the middle plane of the seam what 

prevents shear events. Meantime, calculation of mechanical 

quantities shows that the concentration of compressive 

normal stresses in this zone is very high. It implies that this 

zone is extremely dangerous as concerns with unfavorable 

manifestations of rock pressure. 

The example clearly demonstrates that there are cases 

when seismic monitoring alone is not sufficient for 

obtaining reliable practical conclusions. The need to 

compare the observed seismicity with simulated events and 

to compliment it with geomechanical modeling is obvious. 

Validation and Calibration of Input Data 

We have already mentioned about extreme value of 

direct observations of seismicity for proper prescribing the 

input parameters on the seeded flaws. They are also 

important for improving a geomechanical model. For 

instance, the observed seismicity may serve to disclose 

important geological features like faults, dykes, zones of 

significant changes of mechanical properties and input data 

on in-situ cracks. 

An impressive example of the kind is application of the 

unconventional fracture model (UFM) to numerical 

modeling of hydraulic fractures in low-permeable shales 

(Cipolla et al.
2007

). The input data of the numerical method, 

based on the UFM, include parameters on the supposed in-

situ crack net in the area of simulation. These parameters 

are calibrated after obtaining data on spatial distribution of 

seismicity observed during hydraulic fracturing. Presently 

the method does not employ synthetic seismicity. Surely its 

reliability will increase when complimenting calculations of 

conventional mechanical quantities with numerical 

modeling of seismicity. 

Inversion of Simulated Data. PCA and SRS Methods 

to Delineate Geometrical Features 

For events simulated as described in the previous 

section, we know exact geometry, calculated stresses, 

strains, DD and displacements on time steps. Thus there is 

explicit correspondence between seismicity and mechanical 

quantities. 

Forget, for a while, the knowledge on the geometry and 

mechanical quantities. Now we have only seismic data 

similar to that observed in rock. Consequently we may apply 

methods, used in mining practice for interpretation of 

observed seismicity, to the synthetic data. If the conclusions, 

obtained by a method of inversion, agree with the underlying 

mechanical state, the method is acceptable. Otherwise, it 

needs improvements. 

Thus simulation of seismicity opens an opportunity for 

validation of existing methods of inversion. It may also serve 

for suggestion of new methods, adjusted to peculiarities of 

a particular problem (e.g. Dobroskok and 

Linkov
2008, 2009, 2011

, Dobroskok et al.
2010

). 

Consider, as an example, tracing of hydraulic fracture 

by employing seismic data on location and time of 

microseismic events. 
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Figure 21 presents projections of simulated events to 

the fracture plane. They were obtained in calculations for a 

fracture of the height 100 m propagating in 15 time steps, 

10 m each. Thus the final fracture is a rectangle with the 

height 100 m and the length 150 m: 1500 1  x , 

5050 2  x . We may see that on whole the simulated 

events group within and near this rectangle. 

 

Figure 21. Projections of simulated seismic events 

to the plane of hydraulic fracture 

Now we forget about the actual fracture plane and try 

to guess its position from the synthetic seismicity. To this 

end, we apply the method of strip ray scanning (SRS), 

specially suggested for tracing geometrical changes 

(Dobroskok and Linkov
2008

). The method employs counting 

simulated or observed events within a semi-infinite strip 

of a fixed width Sw  and arbitrary orientation of the normal 

to the strip plane. The normal scans the hemisphere, and the 

orientation, corresponding to the maximal number of events 

within the strip, is associated with the normal to the plane 

containing the source, which induces the events (in the 

considered case, the fracture plane). Projections of the 

events to this plane are used for further analysis. We find 

tallies of events along various azimuths (rays) in the plane. 

The tallies contain information on geomechanical features 

within the plane. For instance, tallies obtained for a time 

step may serve to conclude on the position of the fracture 

front at this moment. Specifically, we may associate the 

tally having the most distinct peak with the direction of the 

front propagation. The most smeared tally, which normally 

corresponds to the orthogonal direction, is associated with 

the front line. 

As an example, Figure 22 shows the tally of the events 

occurred at the sixth time step of simulated hydraulic 

fracture propagation. The actual position of the front is at 

the distance 60 m from the origin. 

We may see that the maximal number of events 

remarkably agrees with the front location. The number of 

events ahead of the front does not differ significantly from 

their number behind the front. This means that in practice, 

the front line may be associated with the middle of events 

occurring per time needed for fracture propagation of about 

10 meters. At least half of events are concentrated near the 

front line. 

The conventional method of analyzing geometrical 

features is the principle component analysis, PCA (see, e.g. 

Jolliffe
1986

), currently employed in the oil (gas) production 

industry. It gives the orientation and three principal axes 

of an ellipsoid containing the majority of events. It does not 

provide tallies. The comparison of the PSA and SRS shows 

that when applied to the totality of the events, the both 

methods are capable to catch the mining or fracture plane 

with reasonable accuracy. However, the totality of events 

does not provide unambiguously estimation of the sizes of 

active zone (see, for example, Figure 21, where scattering 

of the events is notably out of the hydraulic fracture 

occupying the area 1500 1  x , 5050 2  x ). 

 

Figure 22. Tally of events simulated at the sixth time step 

of hydraulic fracture propagation 

Further analysis shows that for tracing changes in 

geometry, it is much more informative to use statistically 

significant groups of events on time steps. Application of 

the PSA and SRS to these groups allows us to delineate the 

mining or fracture front and to find the direction of the 

propagation in time. The methods give close conclusions, 

when applied to the seismicity induced by long-wall 

mining. In contrast, the results for hydraulic fracturing 

indicate that the SRS is superior over the PCA. On the other 

hand, the PCA gives estimation of the strip width Sw , 

prescribed in the SRS. Thus taken together, the methods 

complement each other. Using the synthetic seismicity has 

allowed us to establish the accuracy, thresholds of 

applicability and relation between the methods. 

Comment. Presently, in practice, only the totality of the 

observed microseismic events is used for making conclusions 

on a hydraulic fracture (e.g. Cipolla et al.
2011

 and Wright
2007

). 

Meanwhile, the analysis based on numerical simulation of 

seismicity clearly shows the advantages of employing groups 

of events on time steps providing statistically significant 

number of events. It looks reasonable to use this conclusion 

in practice. 
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SUMMARY 

We have presented an overview and new results on 

numerical modeling of seismic and aseismic events. The 

exposition explains how to adjust a conventional code of 3D 

BEM, FEM, DEM or other method to the modeling. 

It is sufficient to compliment a conventional code with a 

number of subroutines. They are conditionally named 

“FlawInput” for input data on seeded flaws; “ExclusInSitu”, 

“SeismTimeStep” and “TracFlaw” for initialization and 

successive time steps; and “FlawOutput” for processing 

output data. 

The results obtained to the date show the potential of the 

developed technique for better understanding processes in 

rock and for making practical decisions. The technique (with 

possible modifications) is applicable to various problems, in 

which events may occur at a wide range of scales: from 

microns in a brittle specimen to kilometres in the earth crust. 

Its implementation is quite simple and inexpensive. We 

suggest its employing to those who deal with brittle fracture 

accompanied with (micro)seismic events. 
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