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Hydraulic Fracturing
Whatis it?

Hydraulic fracturing is the operation

extensively used in the petroleum industry
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to stimulate oil and gas recovery

Rock Water under high pressure

IS pumped between packers
o to create a crack (Aydrofracture)
Hydr ofracty in a productive layer

Thousands of treatments are successfully pumpechegear



Essence
of Hydraulic Fracturing
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Drastic increase of the surface,
to which oil (gas, heat) flows



Growing Importance
of Hydraulic Fracturing
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The importance of hydraulic fracturing
has dramatically grown last years
because huge resources of gas
are found in low permeable shales

The key element of technology, used in shales,yidraulic fracturing
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Hydraulic Fracturing
Other Applications
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Hydraulic fractures are also used to
% Increase heat production from geothermal reservoirs
¢ Measure in-situ stresses
% Control caving of roof in coal and ore excavations
<+ Enhance CO, sequestration
% Isolate toxic substances in rock

In natural conditions, pressurized melted substance fractures
earth crust leading to formation of veins of mineradeposits
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Scheme Explaining Problems
of Modeling Hydraulic Fractures
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To efficiently employ hydraulic fracturing,
we need to properly model it
accounting for the most essential features listed



First Theoretical’'Models

l l "”l KGD model

P plane-strain state inhorizontal cross-sections
X Khristianovich & Zheltov 1955
T T 2 T Geertsma & de Klerk 1969
n

. PKN model
X plane-strain state invertical cross sections
Perkins & Kern 1961
Nordgren 1972




Further Theoretical Work

Studying of asymptotics.and self-similar solutions

Numerous papers on theoretical studying of hydra
fracturing are focused on

() asymptotics at crack tip

(1) self-similar and asymptotic solutions to studggimes of flow

Spence & Sharp 1985: self-similar plane problem and asymptotics

for newtonian liquid,

Desrouches, Detournay et al 1994: asymptotics for power-law

liquid;

Adachi & Detournay 2002: self-similar plane problem for power-

law liquid;

Savitskl & Detournay 2002: self-similar axisymmetric problem for

Newtonian liquid,

Michell, Kuske & Plerce 2007: asymptotics and regimes

Hu & Garagash 2010: plane problem; accounting for leak-qff



Conventional Formulation

Equations for fluid

Lp Continuity equation
= Po divg+0w/ot —ge =0 (1)

Poiseuille equation
Lq q=-D(w,p)grap (2)

— /'/ Reynolds equation (using (2) in (1) )
9 = Y divi D(w, p)gradp] —ow/dt + g =0 (3)
Initial condition (zero opening) wW(x,0) =0 (4)
BC from physical considerations (at the fluid contgu

dn(x) =do(x) x0OLg p(x) = po(x) x0OLjp (5)

EMPHASIZE THAT

the conventional formulation employs the
flux g
rather than the

fluid particle velocity,
despite theoarticle velocityis the primary quantity used

when deriving the Poiseuille equation
10



Equations for Solid

The opening w being unknown, we need a solid mechanics
| -, | equation for embedding solid (rock)

; Solid mechanics equation
O_>_X, (commonly BIE of linear elasticity
x-(t) *c(® A(W, p) =6
o

Boundary condition(at crack contouj W(Xc) =0

Fracture mechanics strength equations K; =K
(commonly in terms of SIFp Ky =0

Strength limitation permits crack propagation.
In general, it also defines the /ag
between the fluid front and the crack tip
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Simulators of Hydraulic' Fractures

. Interpolated
AN b e Planar fracture geometry
Source ARSI A based on rectangular
elements _— i’ boundary elements
: AX
Simulators

USA: Schlumberger (Siebrits et al; ? Black
Cipola et al.), Pinnacle (Warpinski)

USA: (Cleary et al) - boxes
Japan: (Jamamoto et al.)

Inexplicitly, numerics built in Schlumberger codesis sketched in:
Adachi, Siebrits et alnt. J. Rock Mech Min. &i., 2007, 44, 739-757

The authors emphasized the need
“to dramatically speed up ... simulators”

12



Means to_Meet Challenge
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“To dramatically speed up simulators”
It looks reasonable to employ methods of the

THEORY OF PROPAGATING INTERFACES
J. A. Sethianl.evel Set Methods and Fast Marching Methods,
Cambridge, Cambridge Univ. Press, 2nd ed., 1999

The basic concept of the theory Is
SPEED FUNCTION

BUT! For more than 40 yearst has not been employed
for hydraulic fracture simulation

WHY NOT?27
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Hydraulic Fracturing

PART I

ANSWER TO THE QUESTION
"WHY NOT?”
AND
NEW RESULTS
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Why Not?
Fluid Flux vs."Particle Velocity

Lq /. / n*

The SPEED FUNCTION is the
VELOCITY V.. of the fracture front.

Hence we need aelocity.

BUT !

As mentioned, the conventional formulation employs
the fluid flux rather than thefluid particle velocity
Meanwhile, theparticle velocityis the primary quantity
used when deriving the continuity and Poiseullletedions

This indicates that it Is reasonable to revisit es

1S



Reynolds Transport.Theorem
and Speed Equation

Hydrofracture is
a narrow channel

IO*W* V
Reynolds transport theorem for flow in anarrow channel

O o D e e e p 00 D (o)
dt S (t) ot L(t) ot OXk

Note that theflux appears only after settingby definition g =pwv

For the entire volume, occupied by a fluid, the integral form reads:

dMe _  9(ow)

it = ot
S L. (t)

By derivation, the particle velocity on the front

equals the speed of propagationherefore:

continuity egn

dV + [ pewsv=dS

dXpx On* : :
NS p*r\‘M is the neededSpeed Equation (SE)
F=vyx = et neededspeed Function (SF)
O W 16



Particular Feature
of Conventional Formulation

Epites Continuity equation (local form)
= Po divg+0w/dt —ge =0 (1)
Poiseuille equation
S q=-D(w, p)grac FiEaal?)
q. =0/ Reynolds equation (using (2) in (1))
diviD(w, p)gracp] —ow/ot +ge =0 (3)
Initial condition (zero opening) W(x,0) =0 (4)
BC from physical considerations (at the liquid contair)
dn(x) =do(x) x0OLg p(x) = po(x) xOLy (5x)
But 'We haveaddltlonal SPFED EQéJATION (at the fluid contour)
BC=SE ! VnD—*— D p)* xOLg +Lp (6)

Thus for the e?llptlc %n spatlaFcoordmates)operator
we havetwo rather than one boundary conditions
Involving a function and its normal derivative
Thisindicates that there might-be-difficulties
Specifically, for a fixed front, the problem appearsl-posed



Hadamard Definition and
Tychonoff Regularization

By Hadamard, aproblem is well-posedvhen
¢ A solution exists

* The solution is unigue

¢ The solution depends continuously on the data, in@asonable metric
Jacques Hadamard (1903 les problemes aux derivees partielles et leur

signification physique, Princeton Univ. Bul. 49-52
Otherwise, a problem isill-posed
Hadamard considered that ill-posed problems had nphysical sense
A.N. Tychonoff (1943) clearly recognized significaze of ill-posed
problems for applications. He was the first to suggst a means

to solve them numerically by usingegularization:
A.N. Tychonoff (1963)Solution of incorrectly formulated problems
and the regularization method, Soviet Mathematics 4, 1035-1038.
[Transl. from RussiamA. H. Tuxoros, JIAH CCCP, 1963, 151, 501-504]

We need a proper method of regularization

for the problem of hydraulic fracturing
18



Clear Evidence that BVP"is 1ll-Posed:
Nordgren Problem

Well Epaciure — Elasticity equation for plane-strain
. in vertical cross-sections p=krw

X Reynoldsaeﬁuatlcj gNewtonlan liquid)
i k Br
Q lax\ ax) ot
- In dimensionless variables, the problem becomes

2.4

R O Nordgren’s PDE

ox°> ot
Initial condition: W(Xito):Wo(X)
Boundary conditions: _a‘\;\)/( =qp BC at inletx=0

x=0

w(xp,t) =0 BC at liquid frontx = x.
axx 46W

+ Speed Equation: v, = = ek

There arethreerather than two BC for the PDE of secondorder

In spatial variable x. For any fixed x., the problem is ill-posed
19



Even-More Clear Evidence
that BVP is Ill-Posed

The Nordgren problem is self-similar.

Introduce self-similar variables
4/5 1/5 4/5) - =g t4/5

x = &t W(X) =t~ “P(xt
() Denotezy(é) W3E) The problem is reduced to ODE
dy 3 _
+a(y,dy/ dg, E)aE = ODE (1)

where a(y,dy/dZ,&)=(dy/d+ O.6§)/(3y) IS finite at fluid front &=¢,

Boundary conditions fﬂ the ODE ofsecondorder:
2 =-o75_ 10 i ~
% ¢ 3y(0) BQ atinleté=0 (2)
y(Er) =0 BC at fluid front¢=¢,  (3)
+ SPEED EQUATION,vghich IS met identically by a solution of ODE
satisfying BC (3): %, ~°%o  SEatfludfronté=¢. (4
=

Thus, there aretwo, rather than oneBC at the fluid front. By Picard, theorem,
the Cauchy conditiong3), (4)uniquely definey(¢), dy/dZ and consequently influx

at'thetintet. " Hence a solution of BVP (1)-(3) does not'exist for an-arbitranyflux:.
By Hadamard definition, the BV problem (1)-(3) is ill-posed



Solution“of Nordgren Problem
without regularization

We solved both the starting and self-similar BV Nodgren problem
by finite differences
without regularization

By no means could we have more than two correcitdig
Furthermore,

*»The results always deterioratedar the front
“*Using fine meshe@with the step less than 2Q) led to
complete deterioratiof the solutionn the entire region
This clearly shows that a proper regularization rhed

IS heeded to have accurate and reliable numericaluies

21



Regularization Method
for Hydraulic Fracturing -
e difficulty

We suggest the regularization method employing theewy cause of t

o FOmt Ve have:
‘ PDF W _ div(D(w, p)gradh)—ge =0 (1)
XN with tWO BC at a point x of the liquid front
p(x*) = po(x*) Prescribed for a problem (2)
_\M(X : =v,g Speed Equation 3)
Integration of (3) and accountlng for (2) ylerd
j fD(w p)dp = \&r (4)

By using (4) we impose the BC at a small distaneebehind the front:

Pe 1
= D(W p)dp = ke (5)

po
The regularization method consists in using the Bg) @t a small
distancee behind the front rather than the BC (2) and (3) dhe front

We call this approache - regularization

[t'appears really efficient for solving HF problems
22



Solution“of Nordgren Problem

with £—regularization
We have obtained that near the front:

0 13 Y(Gt) = 075 (Ve (t)(d- Q)

. 2 o Hence, we may impose the BC

0 g 1 Q at the relative distanceg behind the front
<

Y (cg,t) = 075xA(t)v(t)e
We solved both the starting and self-similar BV Nodgren problem
by finite differenceswith ¢ -regularization
Conclusions obtained:
s Theresults are accuraté a wide range ofg (102 > ¢ >105), size (16* >
A¢ >10°) and number (up to 100 000) of time steps

For ODE of self-similar formulation, there a®& correct digits, at least;

For PDE, the error is less thlan 0.03% everd @y 000 steps
» There areno signs of instabilityin specially designed experiments

e A I e o
This shows that - regularization is efficient
There are also other important implications of ti&%E

concerning with a proper choice of variables

4
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““Importance of Particle Velocity

Vi=Vi =V 4

/

PRYY V= Ve =w SpeedEquation (SE)

V. IS the value obarticle velocity vat the fluid front

We see that, although the particle velocity
does not enter the conventional formulation,
it is of physical and mathematical significance:

¢ It defines the speed of the front propagation

* It Is the primary quantity defining the flux= pwv,

» It also defines the movement of proppant, usedduent
the fracture closure,

¢ It Is non-zero andfinite function in the entire flow region, what
makes it a proper choice as a convenient matheahgu@antity

Thus, it looks reasonable to reformulate the HF prblem
___by including the particle velocity into equations

24



Proper Choice of Variables

We have already noticed that theSE and regularization method suggest using:
7 (i) Particle velocityy = * D(w, p)grach instead ofpressurep
\ W

7% >n (ii) Local coordinatesr, smoving with the front instead

X, S of the fixed systemx x,

Besides, the SE, taken together with an elasticity egimplies that commonly
the opening has power asymptotice/ = C(t)r¢, with 0 <o < 1.
Hence itsderivative is singulanear the front: dw/dr — «, whenr — 0.
Thus, it is reasonable to use:
(iii) Modified openingy = w* instead of openingw
In new variables, we obtain themodified Iubricao}ion equation:
dy _ Yy 0vp oy _y
Rt Lo Y _V* e
: ot a or (_n )ar a i _
Emphasize that the new variables and y have ‘good’ properties:

*» Particle velocity isqon-zero finite smoothHunction up to the front
** Modified opening idinear near the front

Thus we have obtained thenodified formulationof the HF prozlsalem




Modified Formulation

Summarizing, we come to thenodified formulationof HF problem.
In contrast with the conventional formulation, it uses:

Theparticle velocity as a variable smooth near the front,
Instead of the pressure

Themodified openingwhich is linear near the front,
Instead of the openingitsalf;
The SE at each point of the front,
Instead of the single equation of global mass balancge

g-regularizationto exclude solution deterioration caused by thé tfeat
the problem is ill-posed for a fixed position oétfront;

Moving spatial coordinates

Reformulationof the common systewf equations and BGn terms of

the suggested variables complimented, when app@itepmvithe-

regularization.
26



Computational Advantages of
Modified Formulation

Computational advantagelsave been explained and illustrated
by revisiting the classical Nordgren problem.

The main advantages are:

Possibility to use well-established methods oftheory
of propagating interfaces;

Avoiding deterioration of numerical solution;
Avoiding singularities at the fluid front.

2%



Analytical Advantages
of Modified-Formulation

Analytical advantagesare evident when revisiting the classical problems
PKN modei plane -strain state invertical cross section

The conventional formulationrequiresinvolved calculations
See: Nordgren, Soc. Pet. Eng., 1972, August, 306-314

KGD model planelstrai? staEe Inhorizontal cross-section
0

—
X
. T == .
Again, theconventional formulationrequiresinvolved calculations
See: SJoence & Sharp, Proc. Roy. Soc. London, A, 1985, 400, 289-313;

Adachi & Detournay, Int. J. Numer. Anal. Meth. Geomech., 2002, 26, 579-604

For both problems, thenodified formulationprovidessimple analytical solutions
See: Linkov, IJES, 2012, 52, 77-88

28



Further Work

Further work may employ new options provided by the

modified formulation. They include:
Development of new efficient algorithms for simuoat of HF;

Improving commercial codes serving for modeling HF;

Obtaining analytical solutions accounting for le#kand non-Newtonian
behavior of fracturing fluids;

Proper accounting for the lag between the fluishfiand the crack contour;
Proper modeling of proppant movement

The work Is In progress.
Hopefully, the joined efforts
of English, Polish and Russian colleagues
will provide useful results in the areas listed



Thank you!



