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Abstract

Hydraulic fracturing is one of the most efficient methods to increase pro-
duction of oil, gas and heat from underground reservoirs. Its numerical mod-
eling has been the subject of numerous publications. The paper briefly sum-
marizes their results and presents recent findings, which notably improve nu-
merical modeling. The conclusions are drawn on new options and further
work for enhancing numerical modeling of hydraulic fractures.

1 Introduction

Hydraulic fracturing is a technique used extensively to increase the surface to or
from which a fluid flows in a rock mass. Beginning with the papers [1], [2], [3],
[4], [5], [6], [7], numerous studies have been published on the theory and numerical
simulation of hydraulic fracturing (see, e. g., the papers [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17] and detailed reviews in many of them). They have provided
knowledge on the asymptotics of the solution, possibility to neglect the lag between
the liquid front and the fracture contour and on the typical regimes. The knowledge
was incorporated in the computational codes for practical applications (e.g. [11],
[14]). Still, there is the need ”to dramatically speed up” simulators [14].

The goal cannot be reached without clear understanding of underlying compu-
tational difficulties which strongly influence the accuracy and stability of numerical
results and robustness of procedures. The recent studies of the author [18], [19], [20],
[21], tended to address this challenge, have disclosed hidden features of the problem
important for numerical modeling. They have led to the modified formulation of
the problem, which opens new options for improving simulators.

The paper aims to (i) clearly explain the conventional formulation, (ii) present
the recent findings, summarized in the modified formulation, (iii) demonstrate the
advantages of the latter, and (iv) make conclusions on the further work.
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2 Conventional formulation

A mathematical formulation of the problem includes (i) fluid, (ii) solid, and (iii)
fracture mechanics equations. Their conventional forms are as follows.

Fluid equations. They include the equation of the mass conservation and the
Poiseuille type eqluation for flow in a narrow channel. For incompressible fluid, the
mass conservation means the volume conservation:

ow

P + divq + q, =0, (1)

where w(x,t) is the channel width (fracture opening), q(x,t) is the flux vector
through the fracture height, q(x,t) is the intensity of distributed sources (usually
this term accounts for leak-off and assumed positive), x denotes the vector of the
position of a point on the surface of the flow, t is the time. The flux and divergence
are defined in the tangent plane to the surface of the flow.

The Poiseuille type equation is of the form

q = —D(w,p)gradp, (2)

where p(x,t) is the net-pressure, D is a function or operator, such that
D(0,p)gradp = 0. Gradient is also defined in the tangent plane.
Substitution of (2) into (1) yields the lubrication (Reynolds) equation:

ow

¢~ dv(D(w, pgradp) +qu = 0. (3)
An initial spatial distribution wy(x) of the opening is defined at start

time ty:

w(x, to) = wo(x). (4)

The spatial operator in (3), being elliptic of the second order, it requires only one
boundary condition (BC) at the fluid contour Ly. When neglecting the lag between
the fluid front L; and the fracture contour L., it may be the condition of the pre-
scribed normal component g, of the flux:

dn(x) = qo(x), x €Ly, (5)

where qo(x) is a known function at L¢; at the points of the fluid injection it is
defined by the injection regime; at the points of fluid front, coinciding with the
fracture contour, we have w = 0 and equation (2) implies qo(x) = 0.

Solid mechanics equations define a dependence of the opening on the net-pressure
caused by deformation of rock:

Aw = p, (6)
with the condition of zero opening at points of the fracture contour x.:

w(x.) = 0. (7)
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Commonly, the operator A in (6) is obtained by using the theory of linear elas-
ticity. As mentioned, when neglecting the lag, the condition of zero opening (7)
replaces the condition of zero flux on the front. Henceforth, we shall consider this
case and write X, = x, with the star marking that a quantity refers to the fluid
front.

Fracture mechanics equations define the critical state and the perspective direc-
tion of the fracture propagation. In the commonly considered case of the tensile
mode of fracture, these are:

Ki(xc) = Kie,  Kp(xe) =0, (8)

where Kj is the tensile stress intensity factor (SIF), K¢ is its critical value, Ky is
the shear SIF.

The problem consists in solving the PDE (3) together with the elasticity equation
(6) under the initial condition (4), boundary conditions (5), (7) and the fracture
conditions (8). The global mass balance is usually employed to follow the fluid front
propagation (e.g. [7], [9], [11], [14]).

3 Fluid particle velocity. Speed equation

The equations of the conventional formulation do not contain the average velocity
of fluid particles in a narrow channel. Rather it employs the flux q. The latter, by
definition, is the particle velocity averaged across the opening and multiplied by the
opening

q(x) = v(x)w(x]). (9)

Meanwhile, the particle velocity is the primary quantity used when deriving the
mass conservation equation and the Poiseuille type equation. It and its averaged
(across opening) value are significant from the physical and computational points of
view. Of special importance is that the limit value of the average particle velocity
at the fluid front v, represents the speed of the front propagation V, [18]:

V, = dﬁi”‘ — v (). (10)

Herein, x,, is the normal component of point x, on the front. It is assumed that
sucking or evaporation through the front is negligible.
In view of (9), the speed equation (10) may be written as

s
Vv, = -, 11
" (11)

For the flux, defined by the Poiseuille type dependence (2), it specifies the speed
equation (SE) for a flow of incompressible fluid in a narrow channel [18]-[21]:

dxn. 1 op
Ve = dt __w*(x*)D(W’p)ﬁx:x*'

(12)
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Thus we have the local condition (12) at points of the propagating fluid front. This
allows one to trace the propagation by well-developed methods of the theory of
propagating interfaces (see, e. g. [22]). In contrast, the conventional formulation
employs the global mass balance (e.g. [7], [9], [11], [14]), which is a single equation.
The latter is sufficient when considering 1-D problems with one point of the front to
be traced. However, in the general case of 2D fracture, it is preferable to employ the
SE, which is formulated at each of many traced points of the fluid front. This gives
the first evidence that using the particle velocity is beneficial from the computational
point of view.

The next evidence follows from the definition of the flux (9). In view of (2) it
implies:

q 1
v=—=——D(w,p)gradp. (13)
w w

From (10) and (13) we see that even when w,(x,) = 0 and ¢, = 0, the limit of the
ratio q/w should be finite to exclude the front propagation with infinite velocity.
Thus near the front, where both the flux and the opening rapidly decrease, their
ratio, representing the particle velocity, does not change thus fast being finite and
non-zero. Moreover, the particle velocity is non-zero in the entire flow region except
for flows with stagnation points. From (13), it can be also seen that the particle
velocity is notably smoother function than the pressure. Therefore, the particle
velocity is a better choice as an unknown function in the lubrication equation than
the flux or the pressure. We conclude that it is reasonable to employ the particle
velocity for numerical modeling of hydraulic fracture propagation. Below it will be
shown that the equality of the particle velocity at the front to the propagation speed
(10), provides additional computational advantages.

4 Clear evidence that BVP is ill-posed

4.1 Nordgren problem

The SE (12) is additional to a prescribed boundary condition at the points of the fluid
front. For zero lag, this leads to difficulties common to over-determined problems
when solving the boundary value problem (BVP) numerically for a fixed position of
the front on an iteration. To disclose the difficulties and to find a means to overcome
them, we study the Nordgren problem [6].

The Nordgren model considers a straight fracture of the height h propagating
along the x-axis under plain-strain conditions. Then the net-pressure in equation
(6) is proportional to the opening: p = kew, where k. = (2/mth)E/(1 —~?), E is
the Young’s modulus, v is the Poisson’s ratio of rock mass. The fluid is assumed
Newtonian and consequently the operator D in (2) is the multiplier D(w,p) = kw3,
where in the case of an elliptic cross section considered by Nordgren k; = 1/(7%n),
u is the dynamic viscosity.

For simplicity, we neglect leak-off and use the dimensionless variables: xq = x/Xn,

Xed = Xe/Xn, Wa = W/Wn, Ya = U/Un, Va = V/Vn, Pa = P/Pns da = 4/dn, doa =

qO/qTU where Xn = (klke/4)1/5q§1/5tﬂl/5a Wn = qntn/xna YUn = Wia Vn = Xn/tna
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Pn = kkwn /4, qn, and t,, are normalizing length, opening, cubed opening, particle
velocity, flux and time, respectively. The normalizing quantities q., t, may be
chosen as convenient. From this point on, we omit the subscript d at the normalized
variables and consider only dimensionless values. The PDE (3) becomes

w _ owt
ot 0x?

The initial condition (4) in the 1-D case reads

= 0. (14)

w(x, to) = wo(x), (15)

with wo(x) = 0 ahead of the fluid front x,. The BC (5) of the prescribed influx qo at
the inlet x = 0 and the BC (7) of zero opening at the front x = x, are, respectively,

ow*
T ® 10)
w(x,,t) =0. (17)

The SE (12) is not used in the conventional formulation. In the dimensionless
variables it reads:
_dx,  4ow?

=t = e : 1
v. dt 30X x=x.(t) (18)

We see that the PDE (14) is of second order in the spatial variable x, while there
are three rather than two boundary conditions (16)-(18) for any fixed position of the
front x,. It can be shown (see subsection (4.3)) that under the BC (17), in limit
X — X4, the PDE (14) turns into the SE (18). Thus one may expect difficulties when
trying to solve the problem (14)-(17) numerically under fixed x, at each iteration
within a time step. Further discussion confirms this suggestion.

4.2 Straightforward solving BVP for starting PDE

Nordgren [6] used straightforward numerical integration of the problem (14)-(17).
This author applied Crank-Nicolson finite difference scheme to approximate the
PDE (14) and to meet the BC (16), (17). The SE (18) was not mentioned. The
paper [6] does not contain details of calculations on the initialization, the time step,
the number of nodes in spatial discretization, the number of iterations, stability of
numerical results and expected accuracy. To obtain knowledge on these issues, we
also solved the BVP (14)-(17) in a straightforward way by using the Crank-Nicolson
scheme. The results are as follows [19].

Actually performing 20 iterations to account for the non-linear term w" is suf-
ficient to reproduce four digits of the fracture opening, except for a close vicinity
of the liquid front. (Increasing the number to 100 iterations does not improve the
solution for all tested time and spatial steps.). For various time steps (At = 1072,
1073, 10°%) and different spatial steps (1072, 1073, 104) taken in various combina-
tions, the results are stable along the main part of the interval [0, x,(t)]. However,
the results always deteriorate and they are unreliable in a close vicinity of the front

4
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(T —x/x, < 0.001). The results coincide with those given in the paper [6] to the
accuracy of two significant digits accepted in this work. In all the calculations, by no
means could we have a reliable third digit not only near the front but in the entire
flow region. Fine spatial meshes did not improve the accuracy as compared with a
rough mesh having the step 0.01. Moreover, using very fine spatial meshes with the
step less than 107> led to complete deterioration of the solution in the entire flow
region.

The numerical results clearly show that the BVP with a fixed position of the front
at an iteration cannot be solved accurately without regularization. The problem
appears ill-posed in the Hadamard sense [23].

4.3 Straightforward solving BVP for ODE of self-similar
formulation

To further clarify the essence of the difficulties, we employ the fact that the Nordgren

problem does not include characteristic geometrical and time parameters. Conse-

quently, its self-similar formulation becomes available [6], [7]. For the constant

influx qo, the self-similar variables are: the self-similar coordinate & = xt=#/3, the
_4dyp?

self-similar opening (&), the self-similar particle velocity vy (&) = —3 o and the

self-similar fracture length &, = x,t#>. They define the physical quantities as
the functions with separated temporal tP and spatial o = x/x, = &/&, variables:

w(t,x) =t"5P(&), v(t,x) = t_]/5v¢(£) = £,t*°. The self-similar front speed is
Vs = 0.8&,; the physical speed is V, = €= = 0.88,t /5.
In terms of the self similar quantities, the PDE (14) becomes the ODE:
dzy 1 (dy 3
06£) —=——y=0 19
v T3 <da+ E’)d& 259 =0 (19)

where y(&) = P3(&). The BC (16) and (17) become, respectively,

dy 3
> y(O)d—aazo =70, (20)
y(&) =0. (21)

The SE (18) in the self-similar form reads:
— = —0.6&,. (22)

In limit & — &,, for a solution, satisfying the BC (21), the ODE (19) turns into

the SE (22). Hence, for the ODE (19), at the point &,, we have imposed not only

the BC (21) for unknown function y, but also the BC (22) for its derivative dy/d&.

The problem appears ill-posed. The following discussion makes it obvious.
Re-write the ODE (19) as

2

d y 3
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where a(y, dy/d§, &) = (dy/d& + 0.6&)/(3y). The equations (21), (22) imply that
the factor a in (23) is finite at the fluid front.

It is easy to check by direct substitution that if y;(&;) is the solution of the
problem (19)—(21) for do = qo1 with &, = E,*], then UZ(E,Z) = y](azﬁ)/k is the
solution of the problem ()-() for qo; = k>/°qo1 with &,, = &,1/Vk; herein, k is an
arbitrary positive number. This implies that C, = 3°¢/&. and Co = y(0)/&2 are
constants independent on the prescribed influx qo. As &, = q3-°/C,, it is a matter of
convenience to prescribe qg or &,. A particular value of qo or &, may be also taken
as convenient. Indeed, with the solution y;(&;) for qo = qo1, we find the solution
for any qo: y(&) = y1(&vk)/k, where k = (qo1/d0)®>, & = & /Vk (& = &a/Vk ).

Let us fix &,. According to (21), (22), at the point &,, we have prescribed both
the function y and its derivative dy/dé&. Thus, for the ODE of the second order
(19) we have a Cauchy (initial value) problem. Its solution defines y(0), g_ga—o and
consequently the flux qo at & = 0. Hence, even a small error when prescribing qo in
(20), excludes the existence of the solution of the BV problem (19)-(21). Therefore,
by Hadamard definition [23], the BV problem (19)-(21) is ill-posed. It cannot be
solved without a proper regularization [24].

Direct computations confirm that it is impossible to accurately solve the BVP
(23), (20), (21). We performed hundreds of numerical experiments with various
numbers of nodal points and iterations and different values of the prescribed influx
o1 at the inlet. Finite difference approximations of second order for d?y/d&? and
dy/d& were combined with iterations for the non-linear term a(y, dy/dé&, &). Up
to 100 000 nodal points and up to 1500 iterations were used in attempts to reach
the accuracy of three correct digits, at least. The attempts failed: by no means
could we have more than two correct digits in the entire flow region. Moreover,
the results always strongly deteriorate near the fluid front. The numerical results
clearly demonstrate that the BV problem (19)-(21) is ill-posed. It cannot be solved
accurately without regularization.

5 e-regularization

5.1 e-regularization for self-similar formulation

A regularization method is suggested by the conditions (21), (22). Indeed, we may
use them together to get the approximate equation y ~ 0.6&, (&, — &) near the front.
Hence, instead of prescribing the BC (21) at the fluid front & = &,, where it is
implicitly complemented by the SE (22), we may impose the boundary condition,
which combines (21) and (22) at a point &, = &,.(1 — ¢) at a small relative distance
e =1—¢&,./&, from the front:

y(&:) = 0.662(1 —¢). (24)

The BV problem (19), (20), (24) is well-posed and it may be solved by finite differ-
ences. Numerical implementation of this approach shows that with ¢ = 1073, 107,
the results for the step AC = AE/E, =103, 1074, 107>, 10 coincide with those of
the benchmark solution [19]. The time expense is fractions of a second. The results
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are stable if ¢ and AC are not simultaneously too small (both ¢ and A( are greater
than 107°).

The essence of the suggested regularization consists in using the SE together
with a prescribed BC to formulate a BC at a small distance behind the liquid front
rather than on the front itself. Besides, the SE is also imposed at the point &; it is
used for iterations. We call such an approach e-regularization.

5.2 e-regularization for starting PDE

Extension of e-regularization to solve the starting PDE (14) requires using the BC
(17) on the front combined with the SE (18) to impose a BC at a small relative
distance from the front. Introduce the relative distance 1 = (x, — x))/x, from the
front. The relative distance from the inlet is 0 = 1 — 1 = x/x,. When using the
variable o, the PDE (14) becomes:

42y day dY
a5z HAAY/30,0) -~ B(Yx) 50 =0, (25)

where Y(o,t) = w?(ox,(t),t), A(Y,dY/do,0) = (0Y/dc + 0.75x,V.0)/(3Y),
B(Y,x.) = x2/(4Y). The BC (16), (17) in the new variables read:

/Y0y 3 (26)

X. 00o—0 47
Y(0,t)_1 = 0. (27)
The SE (18) takes the form:
aY
— =—0.75x,V,. 2
00 o=1 XV, ( 8)

Note that in view of the conditions (27) and (28), the factor A(Y,dY/do, o) and the
term B(Y,x,)0Y/0t are finite at the fluid front 0 = 1. Note also that under the BC
(27), in limit 0 — 1, the PDE (25) turns into the SE (28). In terms of the starting
problem, this means that under the BC (17), in limit x — x,, the PDE (14) turns
into the SE (18).

The regularization of the problem (25)-(27) follows the line used for the self-
similar formulation. The BC (27) is combined with the SE (28) to obtain the
approximate equation near the liquid front:

Y(o,t) =~ 0.75x, (t) V. (t)(1 — o). (29)

Thus we may impose the BC at a small relative distance ¢ from the front by taking
equality sign in (29):

Y(og,t) = 0.75x,(t) V. (t)e, (30)

where 0. = T—¢. In contrast with the problem (25)-(27), the problem (25), (26), (30)
does not involve an additional BC. We may expect that it is well-posed and provides
the needed regularization. Extensive numerical tests confirm the expectation [19].
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We solved the problem (25), (26), (30) by using the Crank-Nicolson scheme and
iterations for non-linear multipliers A(Y, dY/do, o) and B(Y,x,) at a time step. The
velocity was also iterated by imposing the SE at the point 0. = 1T —¢. We could
see that with ¢ = 0.0001, Ao = 0.01, and fifty iterations of the non-linear terms at
a time step, the relative error of the fracture length x, and the front speed x, was
less than 0.03% at each of 20000 time steps. Moreover, starting from the relatively
small time t = 0.01, we could reach the time t = 36128 without loss of accuracy.
There were no signs of instability or deterioration of the opening near the front in
these and many other specially designed experiments. Therefore, e-regularization is
quite efficient.

5.3 e-regularization in general case

According to the rationale presented in the preceding subsections, it appears that
the strategy of using e-regularization when tracing 2-D hydrofracture propagation
is as follows. At each point of the liquid front, an exact boundary condition is
changed to an approximate equality at a small distance r, behind the front. This
approximate equality is obtained by combining the boundary condition at the fluid
front, particular for a considered problem, with the SE, which is quite general. In
practical calculations, the distance (absolute r. or relative ¢) is taken small enough
to use the equality sign in the derived approximate condition. This gives us the
e-reqularized boundary condition near the front. The SE is also assumed to be met
at the distance r. with an accepted accuracy. This gives us the e-reqularized speed
equation. The e-regularized boundary condition allows one to avoid unfavorable
computational effects; the e-regularized SE serves to find the front propagation.

In this way, in general, the speed equation (12) is combined with a condition on
the fluid front to obtain the e-regularized boundary condition [19], [20]:

Pe ‘l
J —D(w,p)dp = V.1, (31)
w

Px

where p, is the pressure at the front, p. = p(re) is the pressure at the distance r,
from the front.
The e-regularized form of the SE (12) is:

Cdxe 1 v

V.(t) = = —WD(w,p e (32)

dt
For the Nordgren problem, in the normalized variableswe have p = 4w, p, =
4w(x.) =0, D(w,p) = w?, 1. = ex,; then, since Y =w? and 9/0n = —19/00, the
regularized BC (31) and the regularized SE (32) reduce to (30) and 0Y/00,—¢, =
—0.75x%, V., respectively.

6 Choice of proper variables

In Section 2, it has been shown that the particle velocity is a better choice as an
unknown function in the lubrication equation than the flux or the pressure. A proper
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choice of the spatial variables near the liquid front is suggested by e-regularization
and by the asymptotic behavior of the opening near the liquid front. Recall that the
e-regularized equations (31) and (32) actually employ the system moving with the
front. Thus it is reasonable to re-write the lubrication equation (3) in this system.
In it, the r-axis is directed opposite to the front velocity, while the other axis is
tangent to the front. Then equation (3) becomes [19]:

alantw = aal:—i_(vn_v*)alanrw _J_Vql; (33)
where using Inw serves to account for an arbitrary power asymptotic behavior of
the opening w(r,t) = C(t)r* + O(r®) near the front (o« > 0, § > «). The value of
the exponent « is known in a number of important particular cases, & = 1+ & when
the leak off is neglected (see, e.g. 7], [8], [9], [15]).

When the opening has the power asymptotic near the front with o« > 0, it yields
singular behavior of the spatial derivatives dOw/0dr, 9?w/0r? at the front, and this
complicates numerical solution of a problem. Therefore, it is reasonable, in addition
to the particle velocity, to use the variable Y = w'/*, which is linear near the front.
In terms of the variables Y, v, and r, the lubrication equation (3) near the liquid
front becomes

Y ov yl-«

ALty (34)

The initial condition (4), boundary condition (5) and the SE (12) are easily
re-written in these variables.

In 1-D cases, the PDE (34) is applicable to the entire fluid. In these cases,
there is the only spatial coordinate x and it is reasonable to normalize x or, what
is actually equivalent, v by the distance x,(t) from the inlet to the front. Then in
terms of 0 = x/x, = 1 — 1/x,, the lubrication equation (34) in 1-D cases reads:

oy 1 oY Yov yl-«

FTREa AR yeielvel

du, (35)

where we have omitted the subscript n in the notation of the particle velocity. Note
that when ¢; near the front decreases faster than w = Y%, we may divide (35) by
Y, obtaining the equation

10Y oV,—voY 1 ov 1

Yot~ xY 90 ox 00 aval’ (36)
where under the assumed asymptotics of q;, the term (9Y/0t)/Y, the factor (oV, —
v)/(x,Y) and the derivative 0v/00 are finite, while the term qi/(xY%) tends to zero
at the liquid front.

7 Modified formulation. Computational and an-
alytical advantages

7.1 Modified formulation

Employing the suggested variables and e-regularization results in the modified for-
mulation of the hydraulic fracture problem. In contrast with the conventional for-



12 APM Proceedings

mulation it uses [18]-[21]:

1. the particle velocity, as a variable smooth near the liquid front, instead of the
pressure;

2. the opening taken in a degree, defined by its asymptotic behavior at the liquid
front, instead of the opening itself;

3. the speed equation at each point of the front to trace the fracture propagation
by the well-developed methods [22], instead of the commonly employed single
equation of the global mass balance; the speed equation also presents the basis
for proper regularization;

4. e-regularization, that is imposing the boundary condition and the speed equa-
tion at a small distance from the front rather than on the front itself, to exclude
deterioration of the solution near the front caused by the fact [18],[19] that
the BVP is ill-posed for a fixed position of the front when neglecting the lag;

5. the spatial coordinates moving with the front and evaluation of the temporal
derivative under fixed values of these coordinates;

6. reformulation of the common system of equations and boundary conditions
in terms of the suggested variables complemented, when appropriate, with
e-regularization.

7.2 Advantages of modified formulation

The computational advantages of using the modified formulation have been explained
in the course of the exposition. There are also analytical advantages, which appear
due to smoothness of the new variables (particle velocity and Y = w'/%) near the
fluid front. In 1-D cases, they allow one to obtain analytical solutions of problems,
like those by Nordgren [6], Spence & Sharp [7], which otherwise require involved
calculations. The analytical solutions of these problems may be found in the paper
[21]. Further obvious applications of the analytical approach may include accounting
for leak-off, when the latter is prescribed in separated temporal and spatial variables
with a specially chosen temporal part and with the spatial part having the same
asymptotic near the fluid front as the opening. Analogous axisymmetric problems
may be solved in this way, as well.

8 Conclusions on further work

Further work on enhancing numerical modeling of hydraulic fractures may employ
new facilities suggested by the modified formulation of the problem. Some of them
have been mentioned above.

1. Since the SE is formulated at each point of the front, it notably extends options
for tracing the fracture propagation as compared with the traditional approach
employing the single equation of the global mass balance. The SE opens
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the possibility to use the well-developed numerical methods of the theory of
propagating interfaces [22]. In particular, level set methods and fast marching
methods become of use.

2. New efficient iterative schemes may employ the particle velocity as an unknown
function, which is notably smoother than commonly employed net-pressure.
What also looks beneficial, only the first spatial derivatives of the particle
velocity enter the modified lubrication equation. The same refers to using the
opening at the degree defined by its asymptotic behavior near the front.

3. Employing e-regularization provides an opportunity for examining and improv-
ing the accuracy of existing commercial codes serving for modeling hydraulic
fractures.

4. For an area sufficiently close to the front, where the solution changes faster
than at the remaining part of a fracture, the PDE (34) and the SE (12),
after spatial discretization, suggest efficient integration in time of a non-linear
system of ODE under initial (Cauchy) conditions by using multi-stage methods
like the Runge-Kutta methods.

5. Obtaining analytical solutions accounting for leak-off in 1-D plain-strain and
axisymmetric problems. Using these solutions for accurate description of the
boundary layer effects caused by the existence of the lag between the fluid
front and the fracture contour.

6. Working out improved while simple models and numerical schemes for ac-
counting for the proppant movement.

Perhaps, execution of these works may facilitate progress in solving even more dif-
ficult and important problems of hydraulic fracturing concerning with strong inho-
mogenuity of rocks and presence of multiple contacts and natural cracks, which may
serve as channels for fluid flow. Still the greatest challenge is to comprehend and to
properly model hydraulic fractures in low permiable shales.
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