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Cloaking via transformational optics

The two initiating papers
Pendry JB, Schurig D, Smith DR. 2006 Controlling electromagnetic
fields. Science 312, 1780–1782
Leonhardt U. 2006 Optical conformal mapping. Science 312,
1777–1780.

Experimental validation for EM and flexural waves
Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith
DR. 2006 Metamaterial electromagnetic cloak at microwave
frequencies. Science 314, 977–980.
Stenger N, Wilhelm M, Wegener M. 2012 Experiments on elastic
cloaking in thin plates. Physical Review Letters 108, 14301.
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Cloaking via transformational optics

Cloaking in acoustics and elasticity (flexural and in-plane)
Milton GW, Briane M, Willis JR. 2006 On cloaking for elasticity and
physical equations with a transformation invariant form. New
Journal of Physics 8, 248.
Norris AN. 2008 Acoustic cloaking theory. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Science 464,
2411–2434.
Farhat M, Guenneau S, Enoch S. 2009 Ultrabroadband elastic
cloaking in thin plates. Physical Review Letters 103, 24301.
Brun M, Guenneau S, Movchan AB. 2009 Achieving control of
in-plane elastic waves. Applied Physics Letters 94, 061903–061903.s
Norris AN, Shuvalov AL. 2011 Elastic cloaking theory. Wave Motion
48, 525–538.
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The governing equations

Consider the out-of-plane deformation u (equivalently a TE/TM polarised
EM wave, or the acoustical pressure) of a thin elastic membrane.

(∇X ⋅ μ∇X + ρω2)u(X) = 0, X ∈ R2.

Under a mapping x = F(X) the equation of motion transforms to (Norris
2008, Proc R Soc A, 464)

(∇x ⋅ μC(x)∇x +
ρω2

J(x)
)u(x) = 0,

where
C = FFT

J
, Fij =

∂xi
∂Xj

, J = detF.
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The regularised transformation
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Similar singular transformation presented in
Rahm M et al. 2008 Photonic Nanostruct 6, 87–95.
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The regularised transformation
The mapping is continuous on χ,
and defined in a piecewise fashion
such that F = F(i)(X) for X ∈ χ(i)
and F(i) ∈ C∞(χ(i)) , where for
example,

F(1)(X) = ( α1X1 + α2
α1X2 + α2X2/X1

) ,

α1 = w/(a +w − ε) and
α2 = (a +w)(a − ε)/(a +w − ε),
0 < ε≪ 1;

F(1) =
⎛
⎜⎜⎜
⎝

α1 0

x2α1α2
x1(α2 − x1)

x1α1
x1 − α2

⎞
⎟⎟⎟
⎠ J(1) = x1α21

x1 − α2
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The material properties

Stiffness for x ∈ Ω1:
C(1) = μF(1)F(1)T[J(1)]−1

C(1) = μ

⎛
⎜⎜⎜⎜⎜
⎝

x1 − α2
x1

−α2x2
x21

−α2x2
x21

x4 + α22x22
x31(x1 − α2)

⎞
⎟⎟⎟⎟⎟
⎠

Density for x ∈ Ω1

ρ
J
= ρx1 − α2

α21x21

where μ and ρ are the stiffness and
density in Ω+.
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Interface conditions

Without loss of generality, consider just a single side of the cloak Ω(1)
embedded in R2 and introduce

A(x) =
⎧⎪⎪⎨⎪⎪⎩

C(1)(x) for x ∈ Ω(1)−
μI for x ∈ Ω+

, ρ(x) =
⎧⎪⎪⎨⎪⎪⎩

ρ(x1 − α2)/(α21x21) for x ∈ Ω(1)−
ρ for x ∈ Ω+

together with the Helmholtz operator L = ∇ ⋅ (A(x)∇) + ρ(x)ω2.

Let u(x) and v(x) be piecewise smooth solutions of the Helmholtz
equation in R2 satisfying the Sommerfeld radiation condition at infinity.

Colquitt et al. | Advances in Applied Mathematics and Mechanics, University of Manchester 8 / 29



Non-singular cloaking of a square inclusion with a microstructured coating

Interface conditions
Integrating the difference u(x)Lv(x) − v(x)Lu(x) over a disc Dr of radius
r containing Ω(1)− yields

0 = ∫
Dr

(u∇ ⋅A∇v − v∇ ⋅A∇u)dx,

= ∫
∂Ω(i)−

(u−n ⋅A∇v− − v−n ⋅A∇u−)dx − ∫
∂Ω(i)−

(u+n ⋅A∇v+ − v+n ⋅A∇u+)dx

+ μ∫
∂Dr

(un ⋅ ∇v + vn ⋅ ∇u) dx.

Hence, the essential interface condition is

[u] = 0 on ∂Ω(1)− ,

and the natural interface condition is

n ⋅ C(1)∇u− = μn ⋅ ∇u+ on ∂Ω(1)− .
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The cloaking problem

Consider the propagation of time harmonic out-of-plane deformations,
generated by a point source, in a homogeneous infinite elastic solid in
which is embedded an inclusion surrounded by a cloak.

[∇ ⋅A(x)∇+ ρ(x)ω2]u(x) = −δ(x − x0), x ∈ R2 ∖ Ω̄0, x0 ∈ Ω+

[∇ ⋅ μ0∇+ ϱ0ω
2]u(x) = 0, x ∈ Ω0,

with continuity of u(x) and tractions on all internal boundaries
Additionally, the Sommerfeld radiation condition is imposed at infinity.
The stiffness tensor A(x) and density ρ(x) are

A(x) =
⎧⎪⎪⎨⎪⎪⎩

C(i)(x) for x ∈ Ω(i)−
μI for x ∈ Ω+

, ρ(x) =
⎧⎪⎪⎨⎪⎪⎩

ρ{J(i)(x)}−1 for x ∈ Ω(i)−
ρ for x ∈ Ω+

,

and μ0 and ρ0 are the stiffness and density of the inclusion respectively.
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The ray equations
Consider a WKB expansion of the displacement amplitude field

u(x) ∼ eiωϕ(x)
∞
∑
n=0

inUn(x)
ωn , as ω →∞,

whence the leading order equation for the phase on the interior of the
cloak is

H(x, s) = μρ−1s ⋅ g−1s − 1 = 0,
where s = ∇ϕ and g = FFT.
Characteristics:

dH
dt
= 0, dx

dt
= ∂H

∂s
,

ds
dt
= −∂H

∂x
,

where t is the ray/time parameter. In index summation notation

dsi
dt
= −2ρ−1μsmsnFnl

∂Fml
∂xi

,
dxi
dt
= 2ρ−1μFilFjlsj.
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The ray equations
Alternative representation of Hamiltonian

H̃(x,n) = μρ−1n ⋅ g−1n − v2 = 0,

where s = n/v = n/∣FTn∣
√
ρ/μ.

Consider a ray in the ambient medium, in direction N passing through
X0. In the cloak, the corresponding curve is x(t) = F(X0 + tN). Hence,

dxi
dt
= FijNj = FilFjlsj

√
μ
ρ
.

Taking the derivative of s for constant N and using the compatibility
condition that the deformation gradient should be irrotational under
finite deformation εjkℓ∂J−1ik/∂xj = 0ℓi

dsi
dt
= −smsnFnℓ

∂Fml
∂xi

√
μ
ρ
.
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The ray equations

Rays on the interior of the cloak:
From the Hamiltonian

dsi
dt
= −2ρ−1μsmsnFnl

∂Fml
∂xi

,
dxi
dt
= 2ρ−1μFilFjlsj.

From transforming a straight line in the ambient medium

dsi
dt
= −smsnFnℓ

∂Fml
∂xi

√
μ
ρ
,

dxi
dt
= FijNj = FilFjlsj

√
μ
ρ
.

Hence, rays in the cloak are simply straight lines deformed according to
the mapping F .
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Ray paths
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Numerical simulations

ω = 10

Intact Uncloaked Cloaked
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Numerical simulations

ω = 10

Intact Uncloaked Cloaked
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Numerical simulations
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Scattering measure

E(u1,u2,R) =
⎛
⎜
⎝
∫
R

∣u1(x) − u2(x)∣2 dx
⎞
⎟
⎠

⎛
⎜
⎝
∫
R

∣u2(x)∣2 dx
⎞
⎟
⎠

−1

E = 0 corresponds to perfect cloaking with no numerical error.
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Scattering measure

Typical values of E are

Source Scattering Measure E
Position Frequency Uncloaked Cloaked Q

[−3, 0]T 5 0.1529 4.351 × 10−4 0.9972
[−3, 0]T 10 0.1455 4.514 × 10−4 0.9969
[−3, 3]T/

√
2 5 0.2002 3.941 × 10−4 0.9980

[−3, 3]T/
√
2 10 0.3286 4.068 × 10−4 0.9988

where
Uncloaked: E(uuncloaked,uGF)
Cloaked: E(ucloaked,uGF)
Q = 1 − E(ucloaked,uGF)/E(uuncloaked,uGF)

Colquitt et al. | Advances in Applied Mathematics and Mechanics, University of Manchester 19 / 29



Non-singular cloaking of a square inclusion with a microstructured coating

(a) No inclusion (b) Uncloaked Inclusion (c) Cloaked Inclusion
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Cloaked inclusion

Uncloaked inclusion
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Cloaking with a lattice - geometry

The symmetric stiffness matrices
C(i) = [μ/J(i)]F(i)TF(i) are positive
definite, hence

C(i) = P(i)
T
Λ(i)P(i),

P(i) = [e(i)1 , e(i)2 ]
e(i)1 and e(i)2 - eigenvectors of
C(i)

Λ(i) = diag(λ(i)1 , λ(i)2 )

0 < λ(i)2 < λ
(i)
1 - eigenvalues of

C(i)

..
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Cloaking with a lattice - material properties
Lattice nodes lie at the intersection points of
the characteristics

d

dτ
x(i)j = e

(i)
j (x

(i)
j ),

for i = 1, . . . 4, and j = 1, 2. The nodal mass is
obtained by evaluating the integral

m(xp) = ∫
A(xp)

ρ(x)dx,

over the unit cell A(xp).
Requiring local conservation of flux yields the
stiffness of the link along e(i)j

kij = ℓijλ(i)j .
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Approximate lattice

For w/a≪ 1 e(i)j ≈ [δi1, δi2]T and the lattice
may be approximated by a square lattice.

[∇ ⋅ μ∇+ ϱω2]u(x) = −δ(x − x0), x, x0 ∈ Ω+,

[∇ ⋅ μ0∇+ ϱ0ω
2]u(x) = 0, x ∈ Ω0,

0 = m(p)ω2u(p)
+ ∑

q∈N (p)
ℓη(q,p) [u(p + q) − u(p)] , in Ω−,

where ei = [δi1, δi2]T, p ∈ Z2, and
N = {±e1,±e2}, and ℓη(q,p) is the stiffness
of the link connecting nodes p and q.
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..

Uncloaked
ω = 3
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Variable stiffness
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..

Uncloaked
ω = 5

..

..

Basic lattice cloak
Constant Stiffness

..

..

Refined lattice cloak
Variable stiffness

..
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Scattering measure

Typical values of E are

Source Scattering Measure E
Position Frequency Uncloaked Cloaked Q

[−3, 0]T 3 0.1430 0.01191 0.8929
[−3, 3]T/

√
2 3 0.1113 3.385 × 10−3 0.9763

[−3, 0]T 5 0.1529 0.04324 0.7173
[−3, 3]T/

√
2 5 0.2002 0.03125 0.8438

where
Uncloaked: E(uuncloaked,uGF)
Cloaked: E(ucloaked,uGF)
Q = 1 − E(ucloaked,uGF)/E(uuncloaked,uGF)
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Concluding remarks
Analysed a regularised invisibility cloak for a square inclusion and
elastic waves in a membrane (or EM or acoustic waves)
The metamaterial cloak has non-singular and piecewise smooth
material properties
Wave propagation through the cloak was analysed via ray equations
derived via a WKB approximation as well as full wave numerical
simulations
Examined the efficacy of the cloak using novel techniques and
demonstrated that the cloak is effective over a wide frequency range
The geometry of the cloak allows for a straightforward connection
to be made with a microstuctured lattice coating
Designed metamaterial cloaks using a simple mass-spring lattice
system, which may allow a practical implementation
Demonstrated that such a lattice cloak is efficient in the low
frequency regime
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Thank you for your attention
Further details may be found in the pre-print

Making Waves Round a Structured Cloak: Lattices, Negative Refraction
and Fringes Proc R Soc A, in press.

ArXiV preprint 1304.1365 http://arxiv.org/abs/1304.1365

Colquitt et al. | Advances in Applied Mathematics and Mechanics, University of Manchester 29 / 29


