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Abstract. A new methodology for modelling articular tibio-femoral contact based on the
recently developed asymptotic model of frictionless elliptical contact interaction between thin
biphasic cartilage layers is presented. The developed mathematical model of articular contact
is extended to the case of contact between arbitrary viscoelastic incompressible coating layers.
The approach requires use of the smooth contact surface geometry and efficient contact points
detection methods. A generalization of the influence surface theory based method for represent-
ing articular surfaces from the unstructured noisy surface data is proposed. The normal contact
forces are determined analytically based on the exact solution for elliptical contact between thin
cartilage layers modelled as viscoelastic incompressible layers. The effective geometrical char-
acteristics of articular surfaces are introduced for using in the developed asymptotic models of
elliptical contact between articular surfaces.
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1 INTRODUCTION

Multibody dynamic simulations of joints require modelling of the distributed internal forces
generated by articular contact. It is believed that namely dynamic and impact patterns of the
contact pressures play an important role in the development and progression of knee joint os-
teoarthritis [1]. Thus, multibody dynamic models of the knee joint capable of predicting contact
stresses would be useful for studying the mechanical aspects of this joint degenerative disease.

In several multibody dynamic models for the tibio-femoral joint [2, 3, 4], the articular con-
tact problem is resolved under the assumption of a rigid contact formulation, when the contact
between the surface of each femoral condyle and the surface of the tibia takes place at a sin-
gle point and no deformation is considered in the articular cartilage layers due to the contact
loading. In contrast to the rigid contact model, the deformable contact model, which takes
into account deformation of the articular cartilage layers, requires not only a description of the
articular surface geometry, but also additional information about the deformation behavior of
articular cartilage. As it was observed in [5], the advantage of deformable articular contact
model over the rigid contact model is two-fold: 1) It is not restricted to contraform contact, and
conforming surfaces can also be considered; 2) It turns out that the knee multibody dynamic
model with deformable contact has a higher numerical stability.

A multibody knee contact modelling methodology [6, 7] based on the deformable contact
model should include the implementation of an efficient mathematical model for calculating
contact pressures and the resulting contact forces. A number of musculoskeletal models of the
knee joint employ different forms of the elastic Winkler foundation model [5]. It is known [8]
that this model is appropriate for describing the stress-deformation behavior of thin compress-
ible elastic coating layers, and it fails to represent contact interaction of incompressible layers.
At the same time, it was shown [9] that the instantaneous response of a biphasic cartilage layer
under distributed normal forces is in perfect agreement with the corresponding solution for a
bonded thin incompressible elastic layer.

In recent years, finite-element (FE) models have been increasingly used to simulate articular
contact [10, 11]. In particular, a mathematical model of distributed contact using a number
of contacting patches was employed in [12]. At that, a uniform stress distribution over each
contact patch was assumed. The advantage of FE models over the elastic foundation model
consists in their ability to evaluate the sub-surface stresses, and these models are not confined to
simple geometrical configurations, to which the rigid contact model is restricted. However, as
it was observed in [13], in comparison with simple deformable contact models, FE models are
too time consuming for the simulation of the knee joint dynamics in real activities such as the
gait cycle. Very recently, a novel surrogate modelling approach for performing computationally
efficient three-dimensional elastic contact with general surface geometry was proposed in [14]
in order to lower the high computational cost of repeated contact analysis within multibody
dynamic simulations. The method [14] fits a computationally cheap surrogate contact model to
data points sampled from a computationally expensive FE elastic contact model.

A new methodology for modelling tibio-femoral contact presented in this study is based on
the recently developed asymptotic model of frictionless elliptical contact interaction between
thin biphasic [15] and viscoelastic [16] layers. The approach requires use of the smooth contact
surface geometry and efficient contact points detection methods. While the subchondral bone
is assumed to be rigid, we study different models for the articular cartilage which is considered
to be a thin layer of isotropic linear-elastic or viscoelastic (compressible or incompressible)
material. The normal contact forces are determined analytically based on the exact solution for
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elliptical contact between thin viscoelastic compressible or incompressible cartilage layers.
As it was observed in [12], an anatomical based multibody dynamics model requires an

accurate description of the articular surfaces in order to solve the articular contact problem. In
this study, we present a generalization of the method [17] for representing articular surfaces
from the unstructured experimental surface data, which can be used for regularization of noisy
surface data. Finally, we introduce the effective geometrical characteristics of articular surfaces
for using in the developed asymptotic models of elliptical contact between articular surfaces.

2 ARTICULAR SURFACE GEOMETRY

The geometrical data of the tibia and femur are assumed to be given in Cartesian coordi-
nate systems (x1, x2, x3) and (x̂1, x̂2, x̂3), respectively. Following [5], the positive x1-axis is
directed anteriorly, the positive x2-axis is pointed medially, and the positive x3-axis is directed
proximally (Fig. 1). To describe the relative position of the femur with respect to the tibia,
let us assume that the tibia is considered to be rigidly fixed. In such a case, the coordinates
x and x̂ can be referred to as the “space-fixed” and “body-fixed” [18]. We assume that in the
fully extended position of the joint, the directions of the corresponding coordinate axes of both
coordinate systems coincide.
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Figure 1: Knee joint coordinate systems.

Let the position of an arbitrary point P̂ on the femoral surface is represented by the vector
r̂(P̂ ) in the body-fixed coordinate system. To describe the position vector r(P̂ ) of the same
point in the space-fixed system, one needs the transition vector r(Ô) from the origin of the tibial
coordinate system (point O) to the origin of the femoral coordinate system (point Ô) and the
rotation transformation matrix R (for its description, see [5]). According to these definitions,
the following relation holds [5, 18]:

r(P̂ ) = r(Ô) +Rr̂(P̂ ). (1)

Consider now an arbitrary point P on the tibial surface and a distance vector between the
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points P and P̂ (see, Fig. 1), i. e.,

d(P, P̂ ) = r(P̂ )− r(P ). (2)

Following [7, 19], we introduce the normal contact distance vector, d0, between the articular
surfaces in such a way that it is parallel to each of the surface normals. The corresponding
points P 0 and P̂ 0 are called the potential contact points. At that, d0 = d(P 0, P̂ 0).

The length of vector d0 with the proper sign taken into account will be called the pseudo-
penetration and will be denoted as follows:

δ0 = −d0 · n0. (3)

Here, n0 is the outer normal to the tibial surface at the point P 0, and the dot denotes scalar
product. We will assume that for any admissible position of the femur relative to the tibia,
there is only a pair of the potential contact points P 0 and P̂ 0 for each pair of femoral and tibial
condyles. Note that this assumption is in agreement with the geometric compatibility of rigid
bodies condition used in [2, 3, 4]. Therefore, if δ0 = 0, then the articular surfaces contact
each other at a single point. In this case a single tangent plane exists to both femoral and tibial
surfaces. If d0 · n0 > 0 (and d0 · n̂0 < 0, where n̂0 is the outer normal to the femoral surface
at the point P̂ 0), then there is no contact between the surfaces and δ0 < 0 (see, Fig. 2, a). And
finally, the penetration condition states that if d0 · n0 < 0 (and d0 · n̂0 > 0), then the contact
between the articular surfaces exists and δ0 > 0 (see, Fig. 2, b).
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Figure 2: Pseudo-penetration of the contacting bodies.

Furthermore, let us introduce a local Cartesian coordinate system (ξ1, ξ2, ζ) with the center
at the point P 0 in such a way that the positive ζ-axis points along the normal vector n0. Locally,
that is in the vicinity of points P 0 and P̂ 0, the equations of both articular surfaces can be written
as follows:

ζ = −φ0(ξ), ζ = −δ0 + φ̂0(ξ). (4)

It is assumed that locally the tibia and femur occupy the domains ζ ≤ −φ0(ξ) and ζ ≥ −δ0 +
φ̂0(ξ), respectively.

In view of Eqs. (4), we define the local gap function as

φ(ξ) = φ0(ξ) + φ̂0(ξ). (5)

In the next section, following [2], we may assume that the functions φ0(ξ) and φ̂0(ξ) can be
approximated by polynomials in ξ1 and ξ2 of degrees n and n̂ as follows:

φ0(ξ) =
n∑
p=2

p∑
q=0

apqξ
p−q
1 ξq2, φ̂0(ξ) =

n̂∑
p=2

p∑
q=0

âpqξ
p−q
1 ξq2. (6)
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The coefficients apq and âpq are calculated by minimizing the functions

N∑
j=1

(
ζj −

n∑
p=2

p∑
q=0

apq(ξ
j
1)p−q(ξj2)q

)2

,
N̂∑
j=1

(
ζ̂j −

n̂∑
p=2

p∑
q=0

âpq(ξ̂
j
1)p−q(ξ̂j2)q

)2

, (7)

where N and N̂ are the numbers of measured surface points, and (ξj1, ξ
j
2, ζ

j) and (ξ̂j1, ξ̂
j
2, ζ̂

j)
are the measured coordinates of the j-th point on the tibial surface (j = 1, . . . , N ) and on the
femoral surface (j = 1, . . . , N̂ ), respectively.

3 CONTACT CONSTITUTIVE RELATIONS

3.1 Elastic foundation model. Elliptical contact of thin compressible elastic layers

Consider a frictionless contact between two thin linear elastic layers of constant thicknesses,
h1 and h2, firmly attached to rigid substrates with continuously varying curvatures. Let us
assume that in the undeformed state, the surfaces of the layers touch at a single point denoted
by P 0. Introducing a Cartesian coordinate system (η1, η2, ζ) with the center at the point P 0

such that the coordinate plane ζ = 0 coincides with the common tangent plane to the layer
surfaces, without loss of generality, we may assume that with the accuracy up to terms of order
|η|3 the gap function, ϕ(η), defined as the distance between the layer surfaces along the ζ-axis,
is represented by an elliptic paraboloid

ϕ(η) = (2R1)
−1η2

1 + (2R2)
−1η2

2. (8)

Let w(η) and ŵ(η) be the vertical displacement functions for the surface points of the layers
representing the tibial and femoral articular cartilages, respectively, due to the action of the
surface pressures p(η). Given that the materials of the layers are elastic with Young’s moduli
E1 and E2, and Poisson’s ratios ν1 and ν2, which are assumed to be not too close to 0.5, we will
have

w(η) = −E−1
1 Ã1h1p(η), ŵ(η) = E−1

2 Ã2h2p(η). (9)

Here the index 1 refers to the tibia and 2 refers to the femur, and the following notation is used:

Ãn =
(1 + νn)(1− 2νn)

1− νn
. (10)

Let also δ0 be the vertical approach of the rigid substrates. Then, the following equation
should hold in the contact region, ω, where the contact pressure is positive:

ŵ(η)− w(η) = δ0 − ϕ(η), η ∈ ω. (11)

Substituting the expressions (9) into Eq. (11), we obtain the contact condition in the form(
E−1

1 Ã1h1 + E−1
2 Ã2h2

)
p(η) = δ0 − ϕ(η). (12)

From Eq. (12), it immediately follows that

p(η) = k
(
δ0 − ϕ(η)

)
, (13)

where k is the Winkler foundation modulus given by

k =

(
(1 + ν1)(1− 2ν1)h1

(1− ν1)E1

+
(1 + ν2)(1− 2ν2)h2

(1− ν2)E2

)−1

. (14)
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It is obvious that if the layers’ materials are similar (i. e., E1 = E2 = E and ν1 = ν2 = ν),
formula (14) simplifies to the following one:

k =
(1− ν)E

(1 + ν)(1− 2ν)h
. (15)

Here, h = h1 + h2 is the joint thickness.
Integrating the contact pressure distribution (13) over the contact region ω, we obtain the

contact force
P =

∫∫
ω

p(η) dη. (16)

In the case of a paraboloidal gap function (8), in view of (13), we find that the contact area ω
is an elliptical domain with the semi-axes a =

√
2R1δ0 and b =

√
2R2δ0. According to Eqs. (8),

(13), and (16), we will have
P = πk

√
R1R2δ

2
0. (17)

Eq. (17) represents the force-displacement relationship for the case of elliptical contact of
thin compressible coatings. The fact that a thin elastic layer with its Poisson’s ratio not too
close to 0.5 behaves like a Winkler elastic foundation was first rigorously established in [20].
The case of elliptical contact in the framework of elastic foundation model was considered in
detail in [21]. The elastic foundation model based on Eq. (15) was used for multibody dynamic
simulations of knee contact mechanics in a number of papers [5, 22]. Formula (14) was recently
considered in [13]. A discussion of analytical models employed for describing articular contact
is presented in [13] along with a comparative study of four different models: the classical Hertz
contact model, Elastic foundation model, a new modified elastic foundation model, which takes
into account the Hertzian type contact for relatively low conforming surfaces and small contact
areas, and the finite-element model.

3.2 Asymptotic model for elliptical contact of thin incompressible elastic layers

It is readily seen that the coefficient Ãn defined by formula (10) vanishes as νn → 0.5, and
consequently the Winkler foundation modulus k tends to infinity (see, Eqs. (14), (15)).

Based on the asymptotic analysis of the frictionless contact problem for a thin elastic layer
bonded to a rigid substrate in the thin-layer limit [23], the following contact constitutive rela-
tions for thin incompressible layers can be established instead of Eqs. (9):

w(η) = −E−1
1 B̃1h

3
1∆p(η), ŵ(η) = E−1

2 B̃2h
3
2∆p(η). (18)

Here, ∆ = ∂2/∂η2
1 + ∂2/∂η2

2 is the Laplace differential operator, and

B̃n =
νn(1 + νn)(4νn − 1)

3(1− νn)2
. (19)

Substituting the expressions (18) into the contact condition (11), we obtain

−
(
E−1

1 B̃1h
3
1 + E−1

2 B̃2h
3
2

)
∆p(η) = δ0 − ϕ(η). (20)

Eq. (20) should hold over the whole contact region ω. According to [8, 24], we impose the
following boundary conditions on the contour Γ of the contact region ω:

p(η) = 0,
∂p

∂n
(η) = 0, η ∈ Γ. (21)
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Here, ∂/∂n is the normal derivative.
In the case of a paraboloidal gap function (8), the exact solution to the problem (20), (21)

was obtained in [8] in the form

p(η) = p0

(
1− η2

1

a2
− η2

2

b2

)2

. (22)

The maximum contact pressure p0 and the semi-axes a and b of the elliptical contact region ω
satisfy the following system of algebraic equations [8]:

δ0 =
4p0

m

(
1

a2
+

1

b2

)
, (23)

1

2R1

=
4p0

ma2

(
3

a2
+

1

b2

)
,

1

2R2

=
4p0

mb2

(
1

a2
+

3

b2

)
. (24)

Here we introduced the notation

m =
(
E−1

1 B̃1h
3
1 + E−1

2 B̃2h
3
2

)−1
. (25)

If the layers’ materials are similar, formula (25) simplifies to the following one:

m =
3(1− ν2)2E

ν(4ν − 1)(1 + ν)(h3
1 + h3

2)
. (26)

Integrating the contact pressure distribution (22) over the contact region ω and taking into
account Eqs. (16), (23), and (24), we obtain the force-displacement relationship

P =
πm

3
MP (s)R1R2δ

3
0. (27)

Here, s = b/a is the aspect ratio of the contact area, and the factor MP (s) is given by

MP (s) =
s(3s2 + 1)(s2 + 3)

(s2 + 1)3
. (28)

According to Eqs. (24), the following relation holds true [15]:

s2 =

√(
R1 −R2

6R1

)2

+
R2

R1

− (R1 −R2)

6R1

. (29)

Eq. (27) represents the force-displacement relationship for the case of elliptical contact of
thin incompressible coatings.

3.3 Asymptotic model for elliptical contact of thin compressible viscoelastic layers

For the sake of simplicity, we assume that Poisson’s ratios ν1 and ν2 of the viscoelastic
layers are time independent. Then, applying the viscoelastic correspondence principle to the
associated elastic equation (12), one arrives at the following governing integral equation:

h

E∞

t∫
0−

Φα(t− τ)
∂p

∂τ
(η, τ) dτ = δ0(t)− ϕ(η)H(t). (30)
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Here, δ0(t) is the variable approach of the rigid substrates, t is a time variable, H(t) is the
Heaviside step function such thatH(t) = 1 for t > 0 andH(t) = 0 for t ≤ 0, E∞ is a harmonic
mean of the relaxed elastic moduli E∞1 and E∞2 , Φα(t) is the compound creep function, i. e.,

Φα(t) = α1Φ1(t) + α2Φ2(t),

E∞ =
2E∞1 E

∞
2

E∞1 + E∞2
, α1 =

2E∞2 h1Ã1

(E∞1 + E∞2 )(h1 + h2)
, α2 =

2E∞1 h2Ã2

(E∞1 + E∞2 )(h1 + h2)
.

Recall that the constants Ã1 and Ã2 are defined by formula (10).
The force-displacement relationship is given be the following equation [16]:

P (t) =
π

h

√
R1R2E∞

t∫
0−

Ψα(t− τ)
d

dτ

(
δ2
0(τ)

)
dτ. (31)

Here, Ψα(t) is the compound relaxation function determined by the relaxation functions Ψ1(t)
and Ψ2(t) of the viscoelastic compressible coatings as follows:

Ψα(t) =
1

α1

Ψ1(t) +
1

α2

Ψ2(t).

Note that if the layer’s materials follow a standard linear viscoelastic solid model, we have

Φn(t) = 1− (1− ρn) exp(−t/Tn),

Ψn(t) = 1− (1− 1/ρn) exp(−t/(ρnTn)),

where Tn is the characteristic relaxation time of strain under applied step of stress, ρn = E∞n /E
0
n

is the ratio of E∞n to the unrelaxed elastic modulus E0
n.

3.4 Asymptotic model for elliptical contact of thin incompressible viscoelastic layers

Applying the viscoelastic correspondence principle to the associated elastic equation (20),
we arrive at the following governing integro-differential equation:

− h3

E∞

t∫
0−

Φβ(t− τ)∆
∂p

∂τ
(η, τ) dτ = δ0(t)− ϕ(η)H(t). (32)

Here, ∆ = ∂2/∂η2
1 + ∂2/∂η2

2 is the Laplace operator, Φβ(t) is the compound creep function
determined by the formulas

Φβ(t) = β1Φ1(t) + β2Φ2(t),

β1 =
2E∞2 h

3
1B̃1(ν1)

(E∞1 + E∞2 )(h1 + h2)3
, β2 =

2E∞1 h
3
2B̃2(ν2)

(E∞1 + E∞2 )(h1 + h2)3
.

At that, the constants B̃1 and B̃2 are defined by formula (19). As before, we require that the
contact pressure distribution p(η, t) should satisfy the boundary conditions (21).

The general solution of Eq. (32) in the case (8) was derived in [16]. Integrating the obtained
contact pressures over the elliptical contact region, we arrive at the following equation:

P (t) =
πm

3
MP (s)R1R2

t∫
0−

Ψα(t− τ)
d

dτ

(
δ3
0(τ)

)
dτ. (33)
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Here, MP (s) is the factor defined by formula (28), and Ψβ(t) is the compound relaxation func-
tion for the viscoelastic incompressible coatings given by

Ψβ(t) =
1

β1

Ψ1(t) +
1

β2

Ψ2(t).

It should be noted that Eqs. (31) and (33) are valid for the case of contact interaction consist-
ing of a monotonic loading phase and a monotonic unloading phase. Thus, they can be applied
for modelling contact forces in impact situations. We underline that the case of repetitive load-
ing requires a special treatment.

4 EFFECTIVE GEOMETRICAL CHARACTERISTICS OF ARTICULAR CONTACT

4.1 Analytical approximations for articular contact surfaces

To model the articular contact, one needs to describe the articular surface geometry in the
framework of a certain mathematical model. A number of surface-fitting methods for represent-
ing the three-dimensional topography of articular surfaces, and in particular, B-spline method
[25, 26], use a structured data set and provide a limited continuity of the fitted articular surface.
Methods to represent articular surfaces from the unstructured data were suggested in [27, 28]
and are based on a parametric polynomial representation.

A method for the representation of articular surfaces, which can be effectively deal with
non-ordered data points, was introduced in [17] based on the influence surface theory of elastic
plates. A set of N ≥ 3 points (ξj, ζj) (j = 1, . . . , N ) is approximated with the function

w(ξ) = b0 + b1ξ1 + b2ξ2 +
N∑
k=1

fk|ξ − ξk|2 ln |ξ − ξk|, (34)

where |ξ| =
√
ξ2
1 + ξ2

2 . For N + 3 coefficients f1, . . . , fN , b0, b1, and b2, we have the following
system of N + 3 linear algebraic equations:

b0 + b1ξ
j
1 + b2ξ

j
2 +

N∑
k=1

fk|ξj − ξk|2 ln |ξj − ξk| = ζj, j = 1, . . . , N, (35)

N∑
k=1

fk = 0,
N∑
k=1

ξk1fk = 0,
N∑
k=1

ξk2fk = 0. (36)

It is clear that the method [17] provides unlimited continuity of the fitted articular surface (with
exception of the data points, where the function (34) is only continuously differentiable).

Since experimental measurements of surface data always contain a degree of measurement
uncertainty, it was observed in [25] that a surface-fitting method which consists of interpolating
the measured surface data may result in some degree of surface roughness. In [17], it was also
noted that one limitation of the fitting method (34) – (36) is that it requires the fitting surface to
pass through all measured surface points. This means that the fitting accuracy of the method
[17] is partially controlled by the accuracy of the measurement instrument. At that, because
of the noise nature of measured data, forcing the fitting surface to pass through all measured
surface data points may not produce an optimal fitting surface.

In view of the observation made above, we propose the following regularization of the
method [17]. Given the measured surface data points (ξj, ζj) (j = 1, 2, . . . , N ), the fitting
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surface must satisfy the optimization criterion

min
f1,...,fN ,b0,b1,b2

1

2

N∑
j=1

fj

(
b0 + b1ξ

j
1 + b2ξ

j
2 +

N∑
k=1

fk|ξj − ξk|2 ln |ξj − ξk|
)

(37)

subject to Eqs. (36) and the unilateral constraint

1

N

N∑
j=1

(
b0 + b1ξ

j
1 + b2ξ

j
2 +

N∑
k=1

fk|ξj − ξk|2 ln |ξj − ξk| − ζj
)2

≤ ε2. (38)

Here, ε represents a given tolerance level. Now, the approximation (34) will not necessarily pass
through the set of surface data points (ξj, ζj) (j = 1, 2, . . . , N ), but it will minimize the plate
potential energy (37), while simultaneously keeping the sum of squired distances

(
w(ξj)−ζj

)2
under the given tolerance level.

Note that spline smoothing methods for regularization of noisy data were considered in [25].

4.2 Effective geometrical characteristics in the case of thin compressible layers

In order to apply the force displacement relationship (17) or (31), one needs to evaluate the
geometric parameters R1 and R2 appearing in the paraboloid approximation (8) of the local gap
function (5). In other words, the local gap function (5) must be approximated as follows:

φ(ξ) = ϕ(ξ) + ϕ̃(ξ), (39)

where ϕ̃(ξ) is in a sense a small discrepancy, while ϕ(ξ), according to (8), should be taken in
the form

ϕ(ξ) = ξ2
1

(
cos2 θ

2R1

+
sin2 θ

2R2

)
+ ξ2

2

(
sin2 θ

2R1

+
cos2 θ

2R2

)
+ ξ1ξ2 sin 2θ

(
1

2R1

− 1

2R2

)
. (40)

Observe that the angle θ introduced in (40) has the meaning of the angle between the positive
ξ1-axis and the positive η1-axis.

Considering the contact problem for the gap function (39) in the framework of the elastic
foundation model, we will have the following contact pressure and contact force (see, Eqs. (13)
and (16)):

p(ξ) = k
(
δ0 − ϕ(ξ)− ϕ̃(ξ)

)
, (41)

P = k

∫∫
ω̃

(
δ0 − ϕ(ξ)− ϕ̃(ξ)

)
dξ. (42)

Here, ω̃ is the new contact region that somehow slightly differs from the elliptical contact region
ω corresponding to the gap function ϕ(ξ).

Under the assumption that the gap variation ϕ̃(ξ) introduces a small variation into the contact
region ω and the contact force P , we may use the approximate relationship

P = k

∫∫
ω

(
δ0 − ϕ(ξ)

)
dξ. (43)
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Consequently, according to (39), (42), and (43), the following approximate equation holds:∫∫
ω

(
φ(ξ)− ϕ(ξ)

)
dξ = 0. (44)

Thus, in view of (44), we suggest the following optimization criterion for choosing the pa-
rameters R1 and R2:

min
R1,R2,θ

∫∫
ω∗

|φ(ξ)− ϕ(ξ)| dξ. (45)

Here, ω∗ is a characteristic area. In particular, the domain ω∗ should contain a maximum contact
area for a class of admissible contact loadings. Note that an estimate for ω∗ can be obtained
based on a polynomial approximation for φ(ξ) (see, Eqs. (5) and (6)). Furthermore, because
of the fact that the gap function depends on the orientation of the femur with respect to the
tibia, and the aspect ratio of the contact zone changes with this orientation, in the place of ω∗
one can substitute a circular domain, which surrounds the maximum elliptical contact zone for
all admissible orientations and contact loadings. Finally, observe that the shape of the local
gap function φ(ξ) outside of the contact area does not play any role in evaluating the contact
pressure and contact force.

4.3 Effective geometrical characteristics in the case of thin incompressible layers

Considering now the contact problem for the gap function (39) in the framework of the
asymptotic model for incompressible elastic layers, we will have the following problem for the
contact pressure (see, Eqs. (20), (21), and (25)):

−m−1∆p(ξ) = δ0 − ϕ(ξ)− ϕ̃(ξ), ξ ∈ ω̃, (46)

p(ξ) = 0,
∂p

∂n
(ξ) = 0, ξ ∈ Γ̃. (47)

Here, Γ̃ is the contour of the contact domain ω̃.
Under the assumption that the gap variation ϕ̃(ξ) introduces a small variation into the ellipti-

cal contact region ω corresponding to the gap function ϕ(ξ), we derive from Eqs. (46) and (47)
the following limit problem for the variation of the contact pressure:

m−1∆p̃(ξ) = ϕ̃(ξ), ξ ∈ ω, (48)

p̃(ξ) = 0,
∂p̃

∂n
(ξ) = 0, ξ ∈ Γ. (49)

Moreover, the gap variation ϕ̃(ξ) will not greatly influence the resulting contact force, if∫∫
ω

p̃(ξ) dξ = 0. (50)

Applying the second Green’s formula and taking into account Eqs. (48) and (49), we reduce
Eq. (50) to the following one: ∫∫

ω

(ξ2
1 + ξ2

2)ϕ̃(ξ) dξ = 0. (51)

11
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Thus, in view of (51), we suggest the following optimization criterion for determining the
parameters R1 and R2 (compare with (45)):

min
R1,R2,θ

∫∫
ω∗

(φ(ξ)− ϕ(ξ))2dξ. (52)

Indeed, two of the three necessary optimality conditions for (52) have the form∫∫
ω∗

(φ(ξ)− ϕ(ξ))(ξ2
1 cos θ + ξ2

2 sin θ + ξ1ξ2 sin 2θ) dξ = 0,

∫∫
ω∗

(φ(ξ)− ϕ(ξ))(ξ2
1 sin θ + ξ2

2 cos θ − ξ1ξ2 sin 2θ) dξ = 0.

Now, adding the equations above, we readily obtain∫∫
ω∗

(φ(ξ)− ϕ(ξ))(ξ2
1 + ξ2

2) dξ = 0. (53)

In other words, Eq. (53) is a necessary optimality condition for (52).
Comparing Eqs. (51) and (53), in view of Eq. (39), we come to the conclusion that Eq. (51)

and (53) coincide if their integration domains coincide. This motivates the choice of the opti-
mization criterion (52).

4.4 Determining the effective geometrical characteristics from experimental surface data

The optimization criteria (45) and (52) can be written as

min
R1,R2,θ

∫∫
ω∗

|φ(ξ)− ϕ(ξ)|σdξ, (54)

where σ = 1 in the case (45) and σ = 2 in the case (52).
The optimization criterion (54) requires a continuous representation of the gap function

φ(ξ), while originally only the coordinates of experimental surface data points (ξj1, ξ
j
2, ζ

j)
(j = 1, . . . , N ) and (ξ̂j1, ξ̂

j
2, ζ̂

j) (j = 1, . . . , N̂ ) have been provided from the measurement ex-
periment (see, Eq. (7)). For instance, the analytical approximation (34) can be sued. However,
it would be useful to have a possibility to determine the parameters R1 and R2 directly from
the experimental surface data. That is why, the following discrete variant of the optimization
criterion (54) makes sense.

Given the measured surface data points (ξj1, ξ
j
2, ζ

j) (j = 1, . . . , N ) and (ξ̂j1, ξ̂
j
2, ζ̂

j) (j =
1, . . . , N̂ ), the two sets of effective geometrical parameters R0

1, R0
2, θ0 and R̂0

1, R̂0
2, θ̂0 must

satisfy the criteria
min

R0
1,R

0
2,θ0

∑
ξj∈ω∗

|ζj − ϕ0(ξj)|σ, (55)

min
R̂0

1,R̂
0
2,θ̂0

∑
ξ̂

j∈ω∗

|ζ̂j − ϕ̂0(ξ̂
j
)|σ, (56)

12
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where ϕ0(ξ) and ϕ̂0(ξ) are given by

ϕ0(ξ) = ξ2
1

(
cos2 θ0

2R0
1

+
sin2 θ0

2R0
2

)
+ ξ2

2

(
sin2 θ0

2R0
1

+
cos2 θ0

2R0
2

)
+ ξ1ξ2 sin 2θ0

(
1

2R0
1

− 1

2R0
2

)
, (57)

ϕ̂0(ξ) = ξ2
1

(
cos2 θ̂0

2R̂0
1

+
sin2 θ̂0

2R̂0
2

)
+ ξ2

2

(
sin2 θ̂0

2R̂0
1

+
cos2 θ̂0

2R̂0
2

)
+ ξ1ξ2 sin 2θ̂0

(
1

2R̂0
1

− 1

2R̂0
2

)
. (58)

According to (55) and (56), the tibial and femoral surfaces are represented locally by the ef-
fective elliptic paraboloids (57) and (58), whose orientations with respect to the positive ξ1-axis
is determined by the angles θ0 and θ̂0, respectively. Now, the effective geometrical parameters
R1 and R2 appearing in the elliptic paraboloidal approximation (8) can be determined from R0

1,
R0

2, θ0 and R̂0
1, R̂0

2, θ̂0 following a standard procedure used in the Hertzian contact mechan-
ics [21].

5 DISCUSSION AND CONCLUSIONS

The asymptotic methodology for tibio-femoral articular contact developed in this paper is
based on an asymptotic theory for a thin compressible or incompressible viscoelastic layer
attached to a rigid substrate. As it was shown in [16], the viscoelastic contact model for in-
compressible layers incorporates the asymptotic model [9, 29, 15] for short-time response of
biphasic layers as a special case, corresponding to the Maxwell model of viscoelastic material.

In the case of elastic layers, the contact constitutive relations can be represented as follows
(see, Eqs. (17) and (27)):

P = EMRlδn0 . (59)

Here, E is Young’s elastic modulus, R =
√
R1R2 is a geometric mean of the curvature radii R1

and R2, the factor M is a function of the thicknesses of the layers h1 and h2, Poisson’s ratio ν,
and the aspect ratio s of the elliptical contact region. At that, for compressible layers, n = 2
and l = 1, while for incompressible layers, n = 3 and l = 2. Note that the dimension of M
is L2−n−l, where L is the dimension of length. Eq. (59) was used in a number of publications
on multibody simulations [30]. In particular, it incorporates the Hertzian force-displacement
relationship with n = 3/2 and l = 1/2.

From Eq. (59) (see also, Eqs. (26) and (27)), it is readily seen that in the case of incom-
pressible layers, the contact force, P , is inversely proportional to the joint thickness cubed,
h3, while in the case of thin compressible coatings, the contact force is simply inversely pro-
portional to the joint thickness (see, Eqs. (15) and (17)). This implication is very important
from the viewpoint of applications of the articular contact modelling to osteoarthritic joints.
Indeed, the change of the articular cartilage thickness has been widely used as an indicator of
its degenerative status.

In order to take into account the effect of energy dissipation during the elasto-plastic contact
interaction, the following Hunt – Crossley equation [31] has been widely employed for mod-
elling impact situations:

P (t) = bδp0(t)δ̇q0(t) + kδn0 (t). (60)

The stiffness coefficient k and the damping coefficient b depend on material and geometric
properties of colliding bodies. As it was observed in [30], an important aspect of Eq. (60) is that
damping depends on the indentation, which is physically sound since the contact area increases
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with deformation and a plastic region is more likely to develop for larger contact displacements.
For biomechanical applications, Eq. (60) was used in [7, 32, 33].

In the case of viscoelastic layers, according to (59), the contact constitutive relations can be
represented as follows (see also, Eqs. (31) and (33)):

P (t) = E∞MRl

t∫
0−

Ψ(t− τ)
d

dτ

(
δn0 (τ)

)
dτ. (61)

Here, E∞ is the relaxation modulus, Ψ(t) is the compound relaxation function.
It should be noted that Eqs. (59) and (61) do not exactly describe the initial short time interval

of contact interaction, while the contact zone does not exceed the joint thickness of the layers.
However, if the maximum characteristic size of the contact zone achieved during the loading
phase is much grater than each thickness of the layers, the overall error introduced by this initial
interval will be relatively small, just like it was shown in [34] with respect to the influence of
the superseismic stage of contact on the Hertzian impact theory.

Observe that in contrast to Eq. (60), the force-displacement relationship (61) introduces the
viscous mechanism of energy dissipation and is likely to be more physically sound in view of
the biphasic nature of articular cartilage. Note also that the consideration of viscous effects in
quasistatic or dynamic simulations could be important, in particular, in the simulation of total
knee replacement [13].

We underline that Eqs. (59) and (61) depend on the geometrical parameters of the articular
surfaces in contact, and their accurate determination is an important step in applications of these
equations. In this study, we introduced the effective geometrical characteristics of articular
surfaces for using in the developed asymptotic models of elliptical contact between articular
surfaces.

It is interesting to observe following [5], where the effects of different mathematical descrip-
tions of articular contact and articular surface geometry on the kinematic characteristics of the
knee model were investigated, that close approximations of the articular surfaces by polynomi-
als are not necessary, since the motion characteristics were not influenced greatly by the degree
of the polynomial approximations for the curved tibial surfaces. This was caused by the size
of the contact area, which covered small surface irregularities and made the contribution of the
contact pressure distribution to the net contact force less dependent on the irregularities. Thus,
this observation supports the necessity to operate with the effective geometrical characteristics
of articular surfaces. It should be also emphasized that the analytical models for the contact
force using the local geometrical characteristics (principal radii of curvature of the articular
surfaces at the potential contact points P 0 and P̂ 0) in contrast to the effective geometrical char-
acteristics are restricted to simple geometries, and therefore their applicability to real articular
contact geometries is limited.

The objective of this study is to describe analytically the articular tibio-femoral contact for
applications in multibody dynamic simulations of the human knee joint. As the main result of
the present paper, simple asymptotic models of elliptical contact between the articular cartilage
layers have been established based on the recently developed asymptotic model of frictionless
elliptical contact interaction between thin biphasic or viscoelastic cartilage layers. The asymp-
totic models use the effective geometrical characteristics of articular surfaces, which can be
determined from the introduced optimization criteria.
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