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Topics of the project

@ micromechanical derivation of transmission conditions for different types of
interfaces

@ derivation of weight functions for cracks along perfect and imperfect interfaces

@ interfacial cracks interactions with micro inclusions, inducing crack acceleration
and arrest, crack kinking, perturbation of the crack front

@ stability analysis of interfacial cracks in dynamic regime
@ crack nucleation from, and interaction with, material micro-instabilities

@ modelling fracture propagation through lattice structures, keeping into account the
interactions between atoms, to be used to disclose the features of failure at the
nanoscale
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0 Problem formulation
@ Problem formulation
@ Preliminary results on the unperturbed problem

e The asymptotic procedure
@ The structure of the asymptotic solution
@ Regular perturbation and dipole fields generated by small defects
@ Singular perturbation for crack advance
@ Analysis of a stable quasi-static propagation

@ !llustrative examples
@ Shielding and amplification effects
@ Crack propagation and arrest
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0 Problem formulation
@ Problem formulation
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Problem formulation

Bimaterial plane with a dominant crack along the interface and small defects:

X2
Y, 2el,
Q1. p.] gos \2”-‘
Vs Ny
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Q_[n-.p-] <
,/21812
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Problem formulation

Bimaterial plane with a dominant crack along the interface and small defects:

Regular perturbations:
e Y, 2el @ Elastic inclusion
Q.1 Pl /G?: \?513 © Microcrack
AW © Rigid line inclusion
€ 20 . .
ri = - R Singular perturbation:
re I a @ Crack advance
Q_[u_.p-] Y%{
et
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Problem formulation

Bimaterial plane with a dominant crack along the interface and small defects:

Q. (1, pe]

€ P+
L. /% <_>_
e =z -
_ p-

Q_[n-.p-]
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Asymptotic solutions

Regular perturbations:
@ Elastic inclusion
@ Microcrack

© Rigid line inclusion

Singular perturbation:
@ Crack advance

Small parameter ¢:
diameter of defect 2¢l, ¢ <« 1
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Problem formulation

Bimaterial plane with a dominant crack along the interface and small defects:

Regular perturbations:

" Y, el @ Elastic inclusion
Q.lp.,p.l ,@: \2513 @ Microcrack
AW © Rigid line inclusion
rL o i ________________ _ Singular perturbation:
re o, ) e o @ Crack advance
Q_[n-.p-] Y;%

e Small parameter ¢:
' diameter of defect 2¢l, ¢ <« 1

Assumptions:
@ Perfect interfaces (continuity of displacements and tractions)
@ Linear elastic and isotropic materials
© The composite is dilute (neglect interactions between small defects)
© Stable quasi-static propagation (neglect inertia terms)
© Mode Il deformation
© Loading on the crack surfaces
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Problem formulation

Bimaterial plane with a dominant crack along the interface and small defects:

Regular perturbations:

i - @ Elastic inclusion
QLK. ps] /(@;: \?El3 e MiCrOCraCk
AW © Rigid line inclusion
. ks A _ Singular perturbation:
r: “////?_ Ie * @ Crack advance
Q_[p_,p-] <
g Small parameter ¢:
' diameter of defect 2¢l, ¢ <« 1
Assumptions:
o

@ Linear elastic and isotropic materials

© The composite is dilute (neglect interactions between small defects)
© Stable quasi-static propagation (neglect inertia terms)

o

o
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Formulation of the BVP:
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Formulation of the BVP:

@ Laplace equation Q.
Auy(x1,x%) =0 in Q4 ro D
Aui(xl,xz) =0 in 8e re P-
Q.
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Formulation of the BVP:

@ Laplace equation Q.
Auy(x1,x%) =0 in Q4 ro D
Aui(xl,xz) =0 in 8e re P-
Q.
@ BC on the crack faces s
P~ =px oON ry
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Formulation of the BVP:

@ Laplace equation Q. = \
13
Auy(x1,x%) =0 in Q4 ro D
Aui(x1,x) =0 in g re p- T i
Q- 73/
@ BC on the crack faces
Qus _ onT§
RE= o =P+ +
@ Interface conditions (interface between two half-planes)
Ouy Ou_ .
=u_ — =pu_—— onl
Uy =U—y by P H s 0
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Formulation of the BVP:

@ Laplace equation Q, Q.. \
13
Auy(x1,x%) =0 in Q4 re B
Aui(x1,x) =0 in g re P- T i
e- “{3/

@ BC on the crack faces

Ou €
—-— = onT
Mt o D+ +
@ Interface conditions (interface between two half-planes)
Ouy Ou_ .
= u_ — = — nI’
Uy =U—y by P H Er 0
@ Transmission conditions for the elastic inclusion
Ouy Ou;

= u;, — = U n
U =iy =g = = i on dg.
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Formulation of the BVP:

@ Laplace equation Q, Q.. \
13
Auy(x1,x%) =0 in Q4 re B
. . % """"" r. o
Aui(x1,x) =0 in g - P- ¢
e- “{3/

@ BC on the crack faces

Ou €
—-— = onT
Mt o D+ +
@ Interface conditions (interface between two half-planes)
Ouy Ou_ .
= u_ — = — nI’
Uy =U—y by P H Er 0
@ Transmission conditions for the elastic inclusion
Ouy Ou;

= u;, — = U on 0,
U+ u l’["‘ran Iu’an 8e

@ Traction-free conditions for the microcrack

ou_ +
—— =0 on
on "2

Andrea Piccolroaz (Aberystwyth University) Asymptotic solutions GREGYNOG 2011



Formulation of the BVP:

@ Laplace equation Q, Q.. \
13
Auy(x1,x%) =0 in Q4 re B
. . % """"" r. o
Aui(x1,x) =0 in g - P- ¢
e- “{3/

@ BC on the crack faces

Ou €
—-— = onT
Mt o D+ +
@ Interface conditions (interface between two half-planes)
Ouy Ou_ .
= u_ — = — nI’
Uy =U—y by P H Er 0
@ Transmission conditions for the elastic inclusion
Ouy Ou;

= u;, — = U on 0,
U+ u l’["‘ran Iu’an 8e

@ Traction-free conditions for the microcrack
au, +
— =0 on
on Y2

@ Dirichlet BC for the rigid line inclusion

Uy =u. ON i
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0 Problem formulation

@ Preliminary results on the unperturbed problem
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Preliminary results on the unperturbed problem ¢ = 0

Q[Hy,pe]
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Preliminary results on the unperturbed problem ¢ = 0

Qul1s, P4l
(p) = (p+ +p-)/2 symmetric loading

Ipl = p+ —p- skew-symmetric loading
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Preliminary results on the unperturbed problem ¢ = 0

Q[Hy,pe]

(p) = (p+ +p-)/2 symmetric loading

Ipl = p+ —p- skew-symmetric loading

Full-field solution by Mellin transform technique:

1 w-tioco )
W (r,0) = %/ i (s,0)r*ds, +6¢€ (0,7), 0<w<05

60 = i
cos(s6) (p+ — p—) sin(s0) =
* |:(/1’+ + p—)ssin(ms) + 241t (p+ + p—)s cos(ms) 1)
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Preliminary results on the unperturbed problem ¢ = 0

Q[Hy,pe]

(p) = (p+ +p-)/2 symmetric loading

Ipl = p+ —p- skew-symmetric loading

Full-field solution by Mellin transform technique:

1 w-tioco )
W (r,0) = %/ i (s,0)r*ds, +6¢€ (0,7), 0<w<05

60 = i
cos(s6) (p+ — p—) sin(s0) =
* |:(/1’+ + p—)ssin(ms) + 241t (p+ + p—)s cos(ms) 1)

Ul =r—r- jump of the function f across the line x, = 0

(f) = (fy +/=)/2 average of the function f across the line x, = 0
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Preliminary results on the unperturbed problem ¢ = 0

Two-terms asymptotic expansion of the unperturbed solution:
@ traction ahead of the crack tip:

( ) (0)
A

o (r,0) = K P2 S0 2 0P, r—0
V2T 2w ’

@ displacement jump across the crack faces (crack opening):

(0) (0)
[u](r) = HEEe <2K"' P/ 2 /) +0(7), 10

Mt ph— V2 3V2m
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Preliminary results on the unperturbed problem ¢ = 0

Two-terms asymptotic expansion of the unperturbed solution:
@ traction ahead of the crack tip:

( ) (0)
A

o (r,0) = K P2 S0 2 0P, r—0
V2T 2w ’

@ displacement jump across the crack faces (crack opening):

(0) (0)

+pu_ [ 2K 2A

[[M(O)]](r)_,u+ 2 1l r1/2 Il rz/z 0( 5/2) - 0
P po— V2T 3271

Integral representation for the constants:

K = - \f | o+ Ipien} e s
f.?’—\f/ {®) =)+ 2pl=n} > ar

n= (- —ps)/(ps +p-) contrast parameter
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Preliminary results on the unperturbed problem ¢ = 0

Displacement gradient Vu(i‘)) at an arbitrary point Y = (d cos ¢, d sin ¢):

ou 1o d 1 d
E= = — all I sinzgaffcostp(—fﬂ> +
Ox1 v wd J_ oo 2cosp —x1/d —d/xi | py + p— 2 X1 d
(p)()n +77[[!7]](x1 [Z5 n @ 4 in3—<‘0
2 2 ’
au - dx i
+ 1 [Pl (x1) sin 1 /d x
= 7—/ cosp+ - | —— — +
Ox v 7d J_ oo 2c08p —x1/d — d/x; Hy + p— 2 \x; d

2p) () +mlplCe1) ([ 0 | d 3p
+T< 7C0s5+ _—x]cos?)}.
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Preliminary results on the unperturbed problem ¢ = 0

Displacement gradient Vu(i‘)) at an arbitrary point Y = (d cos ¢, d sin ¢):

ou 1o dx i) [ .. 1 i m
Ox Y T oo 2¢08p —x1/d —d/x {,qu + {Sm $TReme (; - Z)] *
(p)()n +77[[!7]](x1 < [—x1 n® in3ﬁ>}
2 \/ 2 ’
8“? 1o dx; [Pl (x1) sin ] 1/d x
Oxy Y:7E/ﬂm 2cosp —x1/d —d/x Hy + p— COMPJFE()TIi;) +
+27@>(X1)+n[h}ﬂ(x}) ( ;XICOSer LCOS?)i)}.
2+ V d 2 V —X] 2
\
The point Y will be identified later with the .
centre of the defect. % ................ -
pi 1
&
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e The asymptotic procedure
@ The structure of the asymptotic solution
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The structure of the asymptotic solution

The asymptotic solution is sought in the form:

utr,e) = u(x) + e W) + €5 uP(x) + v(x,9) +o(e?), e—0

X2
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The structure of the asymptotic solution

The asymptotic solution is sought in the form:
ux,e) = u@ ) |+ e31, Wi§) + XL u0@) + Ev(x,¢) o), €—0

X2

@ Solution of the unperturbed problem (e = 0)
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The structure of the asymptotic solution

The asymptotic solution is sought in the form:

ue,e) = u® () [+ e W) + €51 uP(x) + v(x,9) +o(e?), e—0

Z @ Solution of the unperturbed problem (e = 0)
o \
P,
p- e
7
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The structure of the asymptotic solution

The asymptotic solution is sought in the form:

utr,e) = u®(x) +|e XL W) |+ €L uP(x) + v(x,9) +o(e?), e—0

X2

sé")'@" @ Solution of the unperturbed problem (e = 0)
u(")(x)
() \ @ Boundary layers concentrated near the
defects
P+
- o
s Wa(&)
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The structure of the asymptotic solution

The asymptotic solution is sought in the form:

u(x,e) = 1) + e WE) +(ETL W]+ Bxo) +ol), -0

- @ Solution of the unperturbed problem (s = 0)
\ © Boundary layers concentrated near the
, defects
---------------- = © Additional terms to adjust the BC and IC
/ disturbed by the boundary layers
e2u(x) s Wa(&)

£2u®(x)
u(x)
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The structure of the asymptotic solution

The asymptotic solution is sought in the form:

ur,e) = () + e WiE) + @5, u@) +(Hvix,8)|+o(e), €0

- @ Solution of the unperturbed problem (s = 0)
\ © Boundary layers concentrated near the
o defects
Fa oo = © Additional terms to adjust the BC and IC
disturbed by the boundary layers
e u®(x) eWaE) © Perturbation associated with the crack

e2u?(x)
e2u®(x)

advance £%¢
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The structure of the asymptotic solution

The asymptotic solution is sought in the form:

utr,e) = u(x) + e W) + €5 uP(x) + v(x,9) +o(e?), e—0

- @ Solution of the unperturbed problem (s = 0)
\ © Boundary layers concentrated near the
o defects
oo = © Additional terms to adjust the BC and IC
disturbed by the boundary layers
e u®(x) eWaE) © Perturbation associated with the crack

EZuKZJ(x)
e u(x)

advance £%¢

@ Using the linearity of the problem, we analyse the perturbation of each defect
separately (superposition principle).

@ The method can be extended to a finite number of defects, provided that the
distance between defects remains finite (composite is dilute).
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e The asymptotic procedure

@ Regular perturbation and dipole fields generated by small defects
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The boundary layer for an elliptic elastic inclusion

X2
Hi

Y
2€a

8e
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The boundary layer for an elliptic elastic inclusion

x-Y

g

Scaled coordinates: £ =

Wi
“ [
r ca = 2b
2 &1
................. N
wo [T g 2a

X2
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The boundary layer for an elliptic elastic inclusion

x-Y

g

Scaled coordinates: £ =

Hi §2
Wi

X2

The BVP for the boundary layer W(¢):
AW"(£) =0, £eg, AW =0, £eR’\3
Win _ Wout on ag
0 i 0 ou )
pigg WH(E) = ps 5 W (E) = (s — pu)n - Vu " (Y) + 0(e), e—0 on Jg
W—0 as || —
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The boundary layer for an elliptic elastic inclusion

x-Y

g

Scaled coordinates: £ =

6

= 2b

&1

[T g 2a

AW"(€) =0, £€g AW =0, £cR\g

The BVP for the boundary layer W(¢):

Win _ Wout on ag
0 in 0 our )
pigg WH(E) = ps 5 W (E) = (s — pu)n - Vu " (Y) + 0(e), e—0 on Jg

W—0 as || —
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The boundary layer for an elliptic elastic inclusion

x-Y

g

Scaled coordinates: £ =

6

= 2b

&1

[T g 2a

AW"(€) =0, £€g AW =0, £cR\g

The BVP for the boundary layer W(¢):

Win _ Wout on 8g
0 _in 0 ou (0)
pigg WH(E) = ps 5 W (E) = (s — pu)n - Vu " (Y) + 0(e), e—0 on Jg

W—0 as || —

This problem can be reduced to a well-known problem': “Elliptic elastic inclusion in an
infinite elastic plate subject to constant stresses at infinity”

'N.J. Hardiman, QJMAM, 1954
Andrea Piccolroaz (Aberystwyth University) Asymptotic solutions GREGYNOG 2011 15/40



The boundary layer for an elliptic elastic inclusion

Elliptic elastic inclusion in an infinite elastic plate subject to constant stresses at infinity

Miy

2a

2b
X
M+ §
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The boundary layer for an elliptic elastic inclusion

Elliptic elastic inclusion in an infinite elastic plate subject to constant stresses at infinity

Mi Y
2b
2a
X
M+ §
The BVP: ,
Au"=0 in g Au”™=0 in Q\g
. in out

utn _ M()ut7 8“ — ,u 8” on ag

MW * on

W= Bix+By +0(1) as r=+/x2+)*—
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The boundary layer for an elliptic elastic inclusion

Elliptic elastic inclusion in an infinite elastic plate subject to constant stresses at infinity

Mi Y
2b
2a =
X
M+ §
The BVP: ,
Au"=0 in g Au”™=0 in Q\g
. in out

le _ Mout7 8“ — ,u au on ag

MW * on

W= Bix+By +0(1) as r=+/x2+y*— 0
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The boundary layer for an elliptic elastic inclusion

Elliptic elastic inclusion in an infinite elastic plate subject to constant stresses at infinity

Mi Y
2b
2a =
x
M+ §
The BVP: ,
Au"=0 in g Au”™=0 in Q\g
u" = u™ @ = 2 on 9
> i o K+ on 8
W= Bix+By +0(1) as r=+/x2+y*— 0
Solution:

u" =Ax+Ay, in g

uam:le+Bzy7%{31,32}-/\4)(22_))}}'2+0(r72), as r— oo

M is a 2x2 matrix, it is called the dipole matrix
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The boundary layer for an elliptic elastic inclusion

Elliptic elastic inclusion in an infinite elastic plate subject to constant stresses at infinity

Mi Y
2b
2a =
X
M+ §
The BVP: ,
Au"=0 in g Au”™=0 in Q\g
u" = u™ @ = 2 on 9
= , Hi on = K+ on 8
= (B o) a8 1= VE
Solution:

u" =Ax+Ay, in g

uam:le+Bzy7%{31,32}-/\4)(22_))}}'2+0(r72), as r— oo

M is a 2x2 matrix, it is called the dipole matrix
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The boundary layer for an elliptic elastic inclusion

Subtracting the linear term from the Hardiman solution we get the boundary layer:
W"(€) = u" — Bix — Byy = Aix+ Ay — Bix + Byy, in g

OU OUi 1 ) —
W) = u" — Bix— Boy = —5—{B1, B2} - M x{2x+yy}2 +0(r™?), as r—oo
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The boundary layer for an elliptic elastic inclusion

Subtracting the linear term from the Hardiman solution we get the boundary layer:
W"(€) = u" — Bix — Byy = Aix+ Ay — Bix + Byy, in g

OU OUi 1 ) —
W) = u" — Bix— Boy = —5—{B1, B2} - M x{2x+yy}2 +0(r™?), as r—oo

X =& CoSa— & Sina
y=¢&sina+&cosa
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The boundary layer for an elliptic elastic inclusion

Subtracting the linear term from the Hardiman solution we get the boundary layer:
W"(€) = u" — Bix — Byy = Aix+ Ay — Bix + Byy, in g

OU OUi 1
W) = u™ — Bix — Boy = —5—{B1, B2} - M {2x+y}2+0( ), as r— oo

X =& C0Sa—&sina (W) B
{ y=¢&sina+&eosa = \% 51 = (X1 - Y1)/€
5 =(x— Y2)/e
,,,,,,,, . ffx.
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The boundary layer for an elliptic elastic inclusion

Subtracting the linear term from the Hardiman solution we get the boundary layer:
W"(€) = u" — Bix — Byy = Aix+ Ay — Bix + Byy, in g

OU OUi 1
W (&) = u™ BIX*BW*—ﬂ{Bl,Bz}-M {2x+y}2+0( %), as r—oo

X =& C0Sa—&sina (W) B
{ y:f: Sinn+£;cos(1 = \%\ E1 = (X1 — Y1)/€
E = (- Yz2)/e
,,,,,,,, . ffx.
Dipole field:
2
-Y
w(x) = —2% [Vu(o)‘y} . {Mﬁ} +o0(%), €—0
Dipole matrix:
l+cos2a 1—cos2a (I —e)(pus —1)sin2a
_.m B e+ px I+ epy (e+ p)(1+eps)
M_—2ab(1+e)(y* D _(lfe)(u*fl)sinZa 1 — cos2a 1 + cos2a
(e+ pa) (L +eps) e+ py L+ eps

e=b/a, p=p/p
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Dipole fields and dipole matrix for different types of defects

The dipole field for other type of defects can be found with a similar procedure:

x—Y
e —YJ?

62

Ewlx) = —— [Vu(o)‘y] : {M } +o(e?), €—0
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Dipole fields and dipole matrix for different types of defects

The dipole field for other type of defects can be found with a similar procedure:

2 g (0 x-Y 2
5wx:——[Vu ‘] M———| +o(c e—0
) =—5; Y v o)
% 2 ;
%3 sin” « — sin acos o
M= —xl
microcrack —sinacos o cos’ a
% 2 .
A cos” o sin o cos o
M =7l |: :|
rigid line inclusion sin av cos v sin® o
1 1e°
/\ 1 — cos2a + e(1 + cos2ax) —(1 — e)sin2a
@Y M= —Zap(l/e+1)
elliptic void —(1 — e)sin2a 1 4 cos2a + e(1 — cos2cx)
By A
1 + cos2a + e(l — cos2a) (1 — e) sin2«
% M = Tab(1/e+ 1)
(1 — e)sin 2« 1 — cos2a + e(1 + cos 2cx)

elliptic rigid inclusion
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Dipole fields and dipole matrix for different types of defects

The dipole field for other type of defects can be found with a similar procedure:

2 g (0 x-Y 2
5wx:——[Vu ‘] M———| +o(c e—0
) =—5; Y v o)
% 2 ;
%3 sin” « — sin acos o
M= —xl
microcrack —sinacos o cos’ a
% 2 .
A cos” o sin o cos o
M =7l |: :|
rigid line inclusion sin av cos v sin® o
1 1e°
/\ 1 — cos2a + e(1 + cos2ax) —(1 — e)sin2a
@F M= —Zab(l/e+1)
elliptic void —(1 — e)sin2a 1 4 cos2a + e(1 — cos2cx)
By A
1 + cos2a + e(l — cos2a) (1 —e)sin2c
% M = Tab(1/e+ 1)
(1 — e)sin 2« 1 — cos2a + e(1 + cos 2cx)

elliptic rigid inclusion

For an inclusion/void of general shape it is always possible to define an equivalent
elliptic inclusion/void.
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Dipole matrix for line defect with imperfect bonding
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Dipole matrix for line defect with imperfect bonding

@ Line defect with soft bonding (stiffness x):  [o](s) =0, o(s) = &[u](s)
k=0 = o(s)=0 microcrack
{ k=00 = [u](s) =0 perfect bonding (no defect)
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Dipole matrix for line defect with imperfect bonding

@ Line defect with soft bonding (stiffness ):  [o]](s) =0, o(s) = k[u](s)
k=0 = o(s)=0 microcrack
{ k=00 = [u](s) =0 perfect bonding (no defect)

@ Siiff line defect (stiffness x):  [u](s) =0, [o](s)+ & ‘g—i;‘ e = 0

2 o
k=00 = 24 =0 rigid line inclusion

k=0 = [o](s) =0 nodefect
35 |y
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Dipole matrix for line defect with imperfect bonding

@ Line defect with soft bonding (stiffness ):  [o]](s) =0, o(s) = k[u](s)
k=0 = o(s)=0 microcrack
{ k=00 = [u](s) =0 perfect bonding (no defect)

T 2kI+1

T P 1 —cos2a  —sin2a
—sin 2« 1+ cos2a

@ Siiff line defect (stiffness x):  [u](s) =0, [o](s)+ & ‘g—i;‘ e = 0

- 2%u
K=00 = 52

k=0 = [o](s) =0 nodefect
. =0 rigid line inclusion

~

_m K2 1+ cos 2« sin 2
T 2k+1 sin 2o 1 — cos2a
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“Effective” tractions and corresponding perturbation of SIF

On the crack faces and on the interface:

u(x) = u® (x) 4 2w (x)
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“Effective” tractions and corresponding perturbation of SIF

On the crack faces and on the interface:

u(x) = u®(x) + wi(x) + 2u'V (x)
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“Effective” tractions and corresponding perturbation of SIF

On the crack faces and on the interface:

u(x) = u®(x) + wi(x) + 2u'V (x)

BC: ou| - oDl Owi (1) “effective” tractions
- My re - M o e “HEDy, T 7+ along the crack faces
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“Effective” tractions and corresponding perturbation of SIF

On the crack faces and on the interface:

u(x) = u®(x) + wi(x) + 2u'V (x)

V) _ . 9w () effective” tractions
- iaxQ — “£ along the crack faces

TC: Ou —0 = Aul) = (g )%_ () “effective” tractions
el T M o e T W) T along the interface
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“Effective” tractions and corresponding perturbation of SIF

On the crack faces and on the interface:

u(x) = u®(x) + wi(x) + 2u'V (x)

BC: ou| - oDl Owi (1) “effective” tractions
- My re - Mt ox ~ 7 9y, %  along the crack faces

To! ol _y o ouV) = (s )% _ (1) “effective” tractions
N Oy flpe He oxy | L. = e x> -7 along the interface
Problem for u(1):
X2
/’+% (/IA—/u)(‘.}
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“Effective” tractions and corresponding perturbation of SIF

On the crack faces and on the interface:

u(x) = u®(x) + wi(x) + 2u'V (x)

+ Oy 7+ along the crack faces

au(l)’ _ 0w () “effective” tractions

Oou Au™ aw, seffective” :
. on - _ (1) ‘“effective” tractions
Te: [[ui Oxz]] =0 = |[“i Oxy e = (g =p- )ax -7 along the interface

Problem for u(1):
X2 Corresponding SIF:

owy owy
Jlr—— (;u—,:,)i K|(||l) / / (1) + [[o_(l)]]) ( xl) l/2dx1

= _\/ji vu(U)‘ - Mie
Tt +
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e The asymptotic procedure

@ Singular perturbation for crack advance
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Singular perturbation for crack advance

X2

Q. [1s, P4l

p-
Q_[n-.p-]

'Piccolroaz et al., JMPS 2009
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Singular perturbation for crack advance

e The Betti identity:
[ {16 =0t e + ) —x0llele)
7<>?)(x; - xl)[[u]](xl)}dxl =0

Q. [1s, P4l

u, o physical solution U, 32 weight functions

'Piccolroaz et al., JMPS 2009
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Singular perturbation for crack advance

X2

The Betti identity:
/jo {III']}(x{ —x){o) () + (V) (] —an)[o] (1)

Q. [1s, P4l

7<>?)(x; - xl)[[u]](xl)}dxl =0

u, o physical solution U, 32 weight functions

The weight functions’:

i 1X71/2> x; >0,
[UD(x) = 2! (U) (x1) = n/2[U](x1),
0, x; <0,

0, x1 >0,

(E)n) = (1= i)py e =

2
—X1 , x1 <0.
2V2m (pge + p—)

The weight functions are special singular solution of the homogeneous problem
(traction-free crack faces).

"Piccolroaz et al., JMPS 2009
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Write the Betti identity for the unperturbed solution and for the perturbed
solution, subtract one from the other and apply Fourier transform:

O (57 — ¢°<%5F) =S~ ([wl] ™ — ¢ *[m.]7) = 0
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Write the Betti identity for the unperturbed solution and for the perturbed
solution, subtract one from the other and apply Fourier transform:

— 32 — _ iBe2 _
[O1" @ — P95 =S (]~ — ¢ @] ) =0
Two terms asymptotics:
. 4+ )k (1—0aD .
o) = B - B 0B, B — oo
Uy p K s (U= D (g + )AL s —172
@]~ = - BZ + BT+ 0BT, Bx —
2 Ay po—
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Write the Betti identity for the unperturbed solution and for the perturbed
solution, subtract one from the other and apply Fourier transform:

T7 iBe2p— (M 1 €
01" (&g —¢*%5)) ~ 5 (]~ — < *[w]") =0
Two terms asymptotics:
N (0) 4 (0)
_ 1+ 0K, _ 1—0DA _ _
Ugr _ ( 2) 1 5+l/2 _ ( 4) 1 5+3/2 +0([3+5/2), B — oo
. (0) .
- L+ ) (pt + p-)K - L= (py + p— -
[[MO]] :_( )( + ) 1l 5,3/2"1‘( )( + ) ||| 8- S/2+0(6 7/2)’ By — oo
2 Ay po—

Substituting into the Betti identity and coIIecting like powers of 34 :

{5 &Y — ki + - Eonq f (67 = 7 + 0057 =0

K KO . 2ag® — 2®A<o)
m=">m - L S

Aﬁ?) \/7/ <<P (1) + = [[p]](xl ) (—x1) ¥ dx,
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e The asymptotic procedure

@ Analysis of a stable quasi-static propagation
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Analysis of a stable quasi-static propagation

The stress intensity factor is expanded as follows:

3
Ky = KI(I?) + 62 AKﬁbl + Z AKI(I]I) + 0(62), e—0
=1

2
e .
AKﬁ’l = —¢A|(|?) : perturbation produced by the > 11 AKM) : perturbation produced by
: =
2 elongation of the crack along the the defects
interface
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Analysis of a stable quasi-static propagation

The stress intensity factor is expanded as follows:

3
Ky = KI(I?) + 62 AKﬁbl + Z AKI(I]I) + 0(62), e—0
=1

2
e .
AKﬁ’l = —¢A|(|?) : perturbation produced by the > 11 AKM) : perturbation produced by
: =
2 elongation of the crack along the the defects
interface

We assume that the crack propagation is stable and quasi-static (G = G.): AG =0
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Analysis of a stable quasi-static propagation

The stress intensity factor is expanded as follows:

K=K\ +& [ Ak + Z AKD | +0(e?), e—0

j=l1

e .
AKﬁ)' = ¢A|(”) perturbation produced by the Zﬁzl AK,%{) : perturbation produced by
2 elongation of the crack along the the defects
interface

We assume that the crack propagation is stable and quasi-static (G = G.): AG =0

1 1
G= 1 ( + >K|2u = AKj+ ZAKIII =0 = = (0) ZAKI(IP
Ht - j=1 An’ =
‘ 2 pypie 0 36i 3%
AKO):_\/jivU - Mc;, ¢ = —sin =7 cos X
If T s + g u Y, J€i ] 2dj3/2 = 2
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@ !llustrative examples
@ Shielding and amplification effects
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Shielding and amplification effects

Given the geometry and position of the defect:

2 _
AKy = —y) = HHE= Vu(o)’ - Me
T oy + p— Y
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Shielding and amplification effects

Given the geometry and position of the defect:

AKy = — 1 /2 _pp— Vu(o)’ . Me
T oy + p— Y

Definition:
AKy < 0:  shielding effect “the defect is preventing the propagation”
AKy > 0:  amplification effect  “the defect is promoting the propagation”
AKy =0: neutral “the defect has no effect”
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Shielding and amplification effects

Given the geometry and position of the defect:

AKy = — 1 /2 _pp— Vu(o)’ . Me
T oy + p— Y

Definition:
AKy < 0:  shielding effect “the defect is preventing the propagation”
AKy > 0:  amplification effect  “the defect is promoting the propagation”
AKy =0: neutral “the defect has no effect”

Example: shielding/amplification diagrams for macro-microcrack interaction

Xy 2¢el
[r— / o
a
Ft*=F %
4 i
[ +
x
u_ 1

Fi=FI/2 F3=F/2
2b
d=1,2el=0.02,a=2
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Shielding and amplification effects

Given the geometry and position of the defect:

AKy = —1 /2 _pp— Vu(o)’ . Me
T oy + p— Y

Definition:
AKy < 0:  shielding effect “the defect is preventing the propagation”
AKy > 0:  amplification effect  “the defect is promoting the propagation”
AKy =0: neutral “the defect has no effect”

Example: shielding/amplification diagrams for macro-microcrack interaction

Homogeneous plane: Bimaterial plane:
x b
Xy 2¢el iz / 3
: f
] / o s 2 s £
F+t=F a 2
Y H H
b=0 N
d
(p “‘+ m n
X1 b ¥
K- < i < i
Fi=F/2 F3;=F/2 1 z
}<2—b>{ / b=18 7 . 7b=1.8
“p_am I I o I I 31 g —po_iz-Z I o I X iz g
-3 i H - i e
d=1,2¢el=0.02,a=2 . .
Ky = p— pt/p— = 0.1
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0 lllustrative examples

@ Crack propagation and arrest
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Crack propagation and arrest

Y, 26l
/®/ \ieh Given a configuration of defects and position of the
y\ crack tip, the incremental crack advance ¢ is given by:
€0
e — : o D
=1
ﬁ/
2el,
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Crack propagation and arrest

X2
Y, 2el,
/®/ \ieh Given a configuration of defects and position of the
y, crack tip, the incremental crack advance ¢ is given by:
_WL_“ - 0
RRREEEELEEE = = (0 ZAKm
- Am j=1
ﬁ/
e,

It is possible to update the configuration with the new position of the crack tip and recompute the
incremental crack advance in the new configuration, following an iterative procedure:

@ the crack “accelerates” when the increment ¢ is increasing
@ the crack “decelerates” when the increment ¢ is decreasing
@ the crack “arrests” when a neutral configuration is reached (¢ = 0)
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Crack propagation and arrest

X2
Y, 2el,
/®/ \ieh Given a configuration of defects and position of the
y\ crack tip, the incremental crack advance ¢ is given by:
_WL_“ - 0
RRREEEELEEE = = A(O Z AKy,
- =t
ﬁ/
e,

It is possible to update the configuration with the new position of the crack tip and recompute the
incremental crack advance in the new configuration, following an iterative procedure:

@ the crack “accelerates” when the increment ¢ is increasing

@ the crack “decelerates” when the increment ¢ is decreasing

@ the crack “arrests” when a neutral configuration is reached (¢ = 0)
The total crack elongation is computed as:

N
N) =) &
i=0

where N is the number of iterations.
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Numerical example

Main crack interacting with a microcrack (MC) and a rigid line inclusion (RL):

Xy
° 2el,\ %2
T
F‘ 2el o R
47 Me =2 =2 = a=7r/2—«
b | Sose dy = 2dy, I L, w2 = 1,0 =7/ 1
l [ X,
Fi2  FI2
2b
Crack propagation and arrest (1 = 7/8, ay = 0,7/8,7/4,37/8,7/2):
0.07
2@ 5 006] ©
10 1 005
) 0.8 2 L 00 3
0.6 L 0.03 4
0.4 0.02 :
02 ool N\
0 o 200 400 600 800 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Iterations x
0.07 n
006t () : M)
0.05 ¢ K
- 0.04 3 g %
0.03 x
0.02 4
0.01f 3 , oL
0 “r
200 400 600 800
Iterations i
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Crack propagation in an array of defects - |

, A

3
s

NS

0.012 0.025
0.010 0.020
0.008
< 0015
0.006
0.010
0.004
0.002 0.005
0. 0.
x x
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Crack propagation in an array of defects - Il

2 2
(a) 2el o " (b) "
. X , G , Ve
-
- o+ 777777777777777777777777777 - 0+ 777777777777777777777777777
F
-1 1 1 1 1 [ 1 1 [ 1 -1 1 [ [ [ [ [
2el, 0
-2 -2
b p
i H 1 3x
4 T 17 B
R s
] H
0.010
0.0020
0.008
0.0015
s o 0.006
0.0010 0.004
0.0005 0.002
0 0.
6 B
x x
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Summary of the asymptotic procedure

The asymptotic procedure is based on the dipole matrix and weight function approach:
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Summary of the asymptotic procedure

The asymptotic procedure is based on the dipole matrix and weight function approach:

@ The dipole field describes the perturbation produced by a small defect placed in a
homogeneous stress field and gives rise to “effective” tractions applied along the crack faces:

=4[] 2]

The small defect is replaced by “effective” tractions on the crack faces giving the same
perturbation:
ow

(o) = =3+ n) g Dol = (e — ) 5

Ox: 2
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Summary of the asymptotic procedure

The asymptotic procedure is based on the dipole matrix and weight function approach:

@ The dipole field describes the perturbation produced by a small defect placed in a
homogeneous stress field and gives rise to “effective” tractions applied along the crack faces:

=4[] 2]

The small defect is replaced by “effective” tractions on the crack faces giving the same
perturbation:
ow

(o) = =3+ n) g Dol = (e — ) 5

Ox: 2

@ The weight function allows for the derivation of the corresponding perturbation of the SIF:

0
AKyy =/7 (o) ) [U(=x1) + [ (1) (U) (—x1)) dxy

[U]] symmetric weight function, (U) skew-symmetric weight function
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Summary of the asymptotic procedure

The asymptotic procedure is based on the dipole matrix and weight function approach:

@ The dipole field describes the perturbation produced by a small defect placed in a
homogeneous stress field and gives rise to “effective” tractions applied along the crack faces:

[W<o>‘ - [ Mi}

wix) = PR

o

The small defect is replaced by “effective” tractions on the crack faces giving the same
perturbation:
ow

[o] =~y —n-)om

1 ow
() = =5 s + ) -

8)(2 ’

@ The weight function allows for the derivation of the corresponding perturbation of the SIF:

0
AKyy =/7 (o) ) [U(=x1) + [ (1) (U) (—x1)) dxy

[U]] symmetric weight function, (U) skew-symmetric weight function

@ Asymptotic formula for the crack advance:

_ ()
= A(o) ZAKIII

nJj=1
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Symmetric and skew-symmetric weight functions in
linear fracture mechanics
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Fundamental solutions in linear elasticity

Green'’s function

Solution of the displacement field at point x produced by a unit concentrated body force
e located at point y.

Point force

o/

y

Displacement
\uix,y)

ui(x,y) = Gy(x,y)e;

1

Gj(x,y) = T6mp(l = o)r

[(3_41/)55/+r7ir7_/]7 r=x-—-y, r:|r|
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Fundamental solutions in linear fracture mechanics

Point forces

2 N o172
K=1/2(1
V204
K|:\/§x"/2, Ky = /gxfl/z
™ ™

\

Stress concentration
SIFs

Fundamental solutions in linear fracture mechanics are known as weight functions.
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Definition of Weight Functions (Bueckner, 1970)

Definition
SIF associated with concentrated point forces applied on the crack faces.
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Definition of Weight Functions (Bueckner, 1970)

Definition
SIF associated with concentrated point forces applied on the crack faces.

2D case
X2
Point forces Material 1
Vi g
(x/,07)
crack | interface
e — L
P X1
(x/,07) Material 2
Vo, M_

2D weight function: w = w(x)

K=["_w) pk) ax
—~—

distributed load
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Definition of Weight Functions (Bueckner, 1970)

Definition
SIF associated with concentrated point forces applied on the crack faces.

3D case
2D case
X2
Point forces T
Vi g
(>, 0%
crack | | interface Observation
—_—— P £ of the SIF
(x{,07) Material 2 (0,0,x3)
Vo, M_

2D weight function: w = w(x/
weight function: w = w(x;) 3D weight function: w = w(x], x}, x3)

K= [ wi) P\(Xi) dx; K(xs) = [~ [°

/ ! / / / /
w(xi, x5, x3) p(xi,x3) dxjdxs
distributed load ~—

distributed load
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Generalization of Weight Functions (Willis-Movchan, 1995)

Definition

Singular solution to the elastic crack problem with homogeneous boundary conditions
(traction-free crack faces): displacement field U(xi, x»), stress field 3 (xi, x2).
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Generalization of Weight Functions (Willis-Movchan, 1995)

Definition

Singular solution to the elastic crack problem with homogeneous boundary conditions
(traction-free crack faces): displacement field U(xi, x»), stress field 3 (xi, x2).

Material 1
LA

interface

Material 2
Voo n

p(x)

Model domain for the physical solution
The crack lies on the left-hand side

u~ 30 K2 ()

o~ 0 Kir /2t ieg(0)

Andrea Piccolroaz (Aberystwyth University) Asymptotic solutions GREGYNOG 2011 39/40



Generalization of Weight Functions (Willis-Movchan, 1995)

Definition

Singular solution to the elastic crack problem with homogeneous boundary conditions
(traction-free crack faces): displacement field U(xi, x»), stress field 3 (xi, x2).

X2

Material 1 Material 1
Vi By Vi By

L merface merface
X1
Material 2 Material 2
Vo, M AT
p(x)
Model domain for the physical solution Model domain for the singular solutions
The crack lies on the left-hand side The crack lies on the right-hand side
3 1/ 24icr, 3 —1/24i
w0 Kir /2+ief(6) U~ Kir /2+ie ()
3 —1/2+i 3 _ .
o~ 3 Kjr P eg;(0) 2~ 3 K AeG(6)
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Weight Functions: a powerful tool

Weight functions (singular solutions) are a powerful tool in linear fracture mechanics,
allowing for:
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Weight Functions: a powerful tool

Weight functions (singular solutions) are a powerful tool in linear fracture mechanics,
allowing for:

@ derivation of SIFs associated to concentrated forces on the crack faces (Bueckner
weight functions):

w(x|, x5, x3) / / [T](3, A)e® 15— gBax,
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Weight Functions: a powerful tool

Weight functions (singular solutions) are a powerful tool in linear fracture mechanics,
allowing for:

@ derivation of SIFs associated to concentrated forces on the crack faces (Bueckner
weight functions):

w(x, X3, 23) / / [T1(8, A)e®1e25 ) 34,

@ derivation of SIFs associated to a general asymmetrical loading on the crack
faces:

o= [ [ {6NEEN + @6 NG N} e s
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Weight Functions: a powerful tool

Weight functions (singular solutions) are a powerful tool in linear fracture mechanics,
allowing for:

@ derivation of SIFs associated to concentrated forces on the crack faces (Bueckner
weight functions):

w(x, X3, 23) / / [T1(8, A)e®1e25 ) 34,

@ derivation of SIFs associated to a general asymmetrical loading on the crack
faces:

o= [ [ {6NEEN + @6 NG N} e s

@ evaluation of the constants near high-oder terms in the asymptotics of the solution
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Weight Functions: a powerful tool

Weight functions (singular solutions) are a powerful tool in linear fracture mechanics,
allowing for:

@ derivation of SIFs associated to concentrated forces on the crack faces (Bueckner
weight functions):

w(x, X3, 23) / / [T1(8, A)e®1e25 ) 34,

@ derivation of SIFs associated to a general asymmetrical loading on the crack
faces:

o= [ [ {6NEEN + @6 NG N} e s

@ evaluation of the constants near high-oder terms in the asymptotics of the solution
@ solution of perturbation problems (load and/or geometrical perturbations)
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