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Numerical simulation of local field concentration near the contour of a fracture

Motivation

Motivation

Hydraulic fracturing is commonly performed
in the rock composed of layers, structural blocks

and containing inhomogeneities like inclusions, pores and cracks.

Our objective is to develop computational techniques

applicable to efficient evaluation of local fields in strongly

inhomogeneous media with multiple cracks, pores and inclusions

We use the H-BIE, tailored for blocky structures, which take into
account discontinuities and singularities of fields
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Motivation

Problems to be discussed

2D problems: employing the complex variable (CV) fast
multipole method combined with the boundary element
method, based on the CV hypersingular boundary integral
equation

3D problems: employing 3D hypersingular boundary integral
equation in frames of the boundary element method
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Solving 2D problems employing the complex variable hypersingular boundary integral equations

Solving 2D problems employing the complex variable
hypersingular boundary integral equations

Part 1.

2D problems
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Solving 2D problems employing the complex variable hypersingular boundary integral equations

Solving 2D problems employing the complex variable
hypersingular boundary integral equations

Basic complex variable integrals

Approximation of the contour and the density function

The CV fast multipole boundary element method

Numerical example
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Solving 2D problems employing the complex variable hypersingular boundary integral equations

Basic complex variable integrals

Solving the CV H-BIE it is sufficient to focus on two integrals,
singular (S) and hypersingular (H):

S =

∫
Le

f (τ)

τ − t
dτ, H =

∫
Le

f (τ)

(τ − t)2
dτ,

where Le is the boundary element, f (τ) is the density function,
t = x + iy and τ are the CV coordinates of the field point and

integration point, respectively.
A.M. Linkov. Boundary integral equations in elasticity theory. Kluwer Academic Pub-
lishers, Dordrecht-Boston-London, 2002.
Ewa Rejwer, Liliana Rybarska-Rusinek, Aleksandr Linkov. The complex variable fast
multipole boundary element method for the analysis of strongly inhomogeneous media.
Engineering Analysis with Boundary Elements 43 (2014): 105-116.
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Numerical simulation of local field concentration near the contour of a fracture

Approximation of the contour and the density function

Smooth approximation of the contour
by the straight and circular-arc boundary elements

Linear transformation of coordinates from global to local system:

τ = τc + A exp (iαc )τ ′,

a) straight element (A = l) b) circular-arc element (A = −iR)

The straight and the circular-arc elements are transformed into
the standard forms , of unit half length (l = 1) and

unit radius (R = 1), respectively
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Approximation of the contour and the density function

Approximation of the density function

General approximation of the density function, for both
ordinary and singular elements, is:

f (τ) = (τ − c)β P (τ) ,

where c is the end point of the integration path;
P (τ) is a linear combination of the form functions;

for an ordinary (non-tip) element β = 0,

for a singular (tip, multi-wedge) element β = m
n , |β| < 1;

e.g. for the displacement discontinuity and traction near a crack tip,
β = 1/2 and β = −1/2, respectively.

The value of β for singular multi-wedge elements,
is found by the standard procedure.

Blinova V.G., Linkov A.M., A method to find asymptotic forms at the common apex of
elastic wedges., J. Appl. Math. Mech., 1995, 59 (2), 187-195.
Linkov A.M., Koshelev V.F., Muti-wedge points and multi-wedge elements in compu-
tational mechanics: evaluation of exponent and angular distribution, Int. J. Solids and
Structures, 2006, 43, 5909-5930.
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Approximation of the contour and the density function

The CV fast multipole boundary element method

Considering strongly inhomogeneous structures demands the analysis of
problems with hundred of thousends of DOF.

The efficient approach to deal with such problems, is to combine the
BEM with the fast multipole method (FMM).

Levels
0

1

2

3

4

5

Hierarchical quad-tree structure employed in the FMM

Y.J. Liu. Fast multipole boundary element method: theory and applications in engi-
neering. Cambridge University Press, 2009.
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Approximation of the contour and the density function

The CV fast multipole boundary element method

Considering strongly inhomogeneous structures demands the analysis of
problems with hundred of thousends of DOF.

The efficient approach to deal with such problems, is to combine the
BEM with the fast multipole method (FMM).

The method suggested is free from numerical integration: all
integrals in frames of BEM and FMM are evaluated analytically

employing recurrent formulae.

Comprehensive presentation of all details may be found at:

Ewa Rejwer, Liliana Rybarska-Rusinek, Aleksandr Linkov. The complex variable fast
multipole boundary element method for the analysis of strongly inhomogeneous media.
Engineering Analysis with Boundary Elements 43 (2014): 105-116.
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Approximation of the contour and the density function

Numerical applications

The method developed may be applied for

finding the effective properties of an inhomogeneous material
(total flux, effective conductivity, effective moduli);

evaluating a local concentration of fields (FIFs, SIFs).

Here we present one numerical example:
evaluation of the local fields to characterize the strength of a

material, by employing the statistics of extremes.
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Approximation of the contour and the density function

Numerical example
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Consider antiplane shear of a cell
with randomly distributed cracks
(non-intersecting and
intersecting) of equal half-length
l and the crack density

ρ =
Nc l

2

A
,

where A is the area of the cell,
Nc is the number of cracks in it.
The crack angle is uniformly
distributed in the interval [0, π].

Each side of the RVE is represented
by equal number of ordinary straight boundary elements.

Each crack by four straight elements: two ordinary and two tip.
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Approximation of the contour and the density function
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Approximation of the contour and the density function

Boundary conditions

We assume the following boundary conditions:

zero tractions at the crack surfaces;

constant displacements ul = 0 and ur = u0 at the left and right
vertical sides of the cell, respectively;

zero shear traction σ0
zy = 0 at the horizontal sides of the cell.

The difference in the values of shear stress σ0
xz , calculated on the left

and right side of the cell, gives an integral estimation of the
computational error

In the calculations, the relative error of σ0
xz does not exceed 0.52%.
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Approximation of the contour and the density function

Calculation of a stress intensity factor

Distribution of the SIF KIII is studied by employing the
CV FM-BEM, which allows solving problems for the cell with large

number of non-intersecting and/or intersecting cracks.

In the calculations we increased the number Nc from 100 to 300
for the crack density ρ = 0.32.

Increasing the number of seeded cracks led to too many
configurations with almost parallel closely located cracks.
Decreasing distance between cracks, the condition

number of the system tends to infinity.
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Approximation of the contour and the density function

Stress intensity factor at the crack tips

Figures present a distribution of 300 non-intersecting and intersecting
cracks. Unfilled (dark) circle near a crack tip shows the magnitude of a
positive (negative) SIF. The radius of a circle is proportional to the SIF.
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Approximation of the contour and the density function

Stress intensity factor distribution for ρ = 0.32

The empirical cumulative probability function for the density 0.32,
for non-intersecting and intersecting cracks.

To overcome the computational difficulty, for the crack density 0.32, we
were repeating random seeding of 100, 200 and 300 cracks in 50, 24 and
16 tests, respectively. In the statistical sense the averaged results of those
tests correspond to seeding 5000, 4800 and 4800 cracks in a single cell.
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Approximation of the contour and the density function

Stress intensity factor distribution for ρ = 0.32

The empirical cumulative probability function for the density 0.32,
for non-intersecting and intersecting cracks.

Dark dashed curve corresponds to zero density.

The results for non-intersecting cracks, which has been studied by another
method in the paper by Kushch, are presented by a solid dark curve. The

results are comparable. For the tail, they are practically the same.

e.g. V.I. Kushch, S.V. Shmegera, I. Sevostianov. SIF statistics in micro cracked solid:
Effect of crack density, orientation and clustering. Int. J. Eng. Sci., 47: 192-208, 2009.
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Approximation of the contour and the density function

Stress intensity factor distribution for ρ = 0.32

The empirical cumulative probability function for the density 0.32,
for non-intersecting and intersecting cracks.

For intersecting cracks there appear notable portion of cracks with very
high values of the SIF, so that the tails extend much farer.
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Approximation of the contour and the density function

Approximation of the distribution function

The statistical analysis is performed using the Extreme Value Theory.
Analysis shows that, for the non-intersecting cracks, the tail

of the empirical cumulative probability function F (x) is fitted well
by the Weibull type Generalized Extreme Value (GEV) distribution:

F (x) = exp

(
−
(

1 + k
x − µp

σp

)− 1
k

)
,

where k < 0. The parameters of distribution are about:
k = −0.25, µp = 0.53, σp = 0.49.

For intersecting cracks, the tail of the function F (x),
is fitted well by the Gumbel type GEV distribution:

F (x) = exp

(
−exp

(
−x − µp

σp

))
.

The parameters of the distribution, are about: µp = 0.35, σp = 0.83.
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Approximation of the contour and the density function

Statistics of the stress intensity factor distribution for ρ = 0.06

For lower densities the number of cracks in the cell may be
increased and the tests decreased. For the density ρ = 0.06,

for non-intersecting cracks, we take: Nt = 50, 20, 5, 3 tests,
for Nc = 100, 500, 1000, 1500; for intersecting cracks, we
take: Nt = 50, 10, 7 tests, for Nc = 100, 500, 700 cracks.

The empirical cumulative probability function for non-intersecting and
intersecting cracks with the density ρ = 0.06 is presented below.
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Approximation of the contour and the density function

Statistics of the stress intensity factor distribution for ρ = 0.06

The figure shows that the distributions practically coincide.
This confirms that for low densities (ρ 6 0.06),

the number of seeded cracks may be taken greater,
while the number of tests less than for high densities (ρ > 0.24).
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Approximation of the contour and the density function

Calculation of a fracture risk

The data on extreme values provide us with the
measure of fracture risk of a microfractured solid.

The maximal load is defined by the condition:

F (Ks) = P(K ′
III < Ks) = 1− δ,

where Ks = σc
xz/σ

0
xz corresponds to the accepted probability

δ of fracture; σc
xz is the critical SIF, found in tests.

The values of Ks (”safety factor”), corresponding to
the level δ = 0.05 of fracture risk, for crack densities

0.0, 0.06 and 0.32, are given in the Table.

Crack configuration ρ = 0.0 ρ = 0.06 ρ = 0.32

non-intersected 0.9969 1.1282 1.5709

intersected 0.9969 1.5133 3.0764
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Approximation of the contour and the density function

Conclusions from numerical example

the CV fast multipole BEM may be applied for studying the extreme
values of the SIFs at tips of both non-intersecting and intersecting,
randomly seeded cracks;

for the density exceeding 0.24, when the number of cracks in a cell
exceeds 300, it is reasonable to seed acceptable number of cracks
and to repeat statistical tests, rather than to take excessively large
number of cracks in a representative cell;

for the crack density 0.32, using the CV fast multipole BEM reduces
the number of statistical tests three-fold, at least, as compared with
a BEM not combined with the fast multipole method.
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Solving 3D problems employing the hypersingular boundary integral equations

Solving 3D problems employing
the hypersingular boundary integral equations

Part 2.

3D problems
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Solving 3D problems employing the hypersingular boundary integral equations

Solving 3D problems employing
the hypersingular boundary integral equations

Integrals entering hypersingular boundary integral equation
(H-BIE)

Approximation of the surface and the density function

Numerical example
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Basic integrals

Integrals entering H-BIE

Inspection of the BIE of static 3D potential and elasticity theory
shows that it is sufficient to consider the function∫

Sq

f (y)

R
dSy ,

and its spatial derivatives: ∂/∂xi , ∂
2/∂xi∂xj , ∂

3/∂xi∂xj∂xk .

Herein, Sq is the surface of a boundary element; f (y) is a function
(density) to be properly approximated on the element and R is the

distance between the field and integration points.

Linkov, A. M., V. V. Zubkov, and M. A. Kheib. A method of solving
three-dimensional problems of seam workings and geological faults. Journal of Mining

Science 33.4 (1997): 295-315.
Linkov A. M., Boundary Integral Equations in Elasticity Theory,

Dordrecht-Boston-London, Kluwer Academic Publishers, 2002, 268 p.
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Approximation of the surface and the density function

Approximation of the surface by the trapezoidal elements

We solve the H-BIE by the boundary element method
and represent the surface by the sum of ordinary and edge

trapezoidal elements Sq (commonly used triangular, square and
rectangular elements are their special cases).

P1 P2

P4 P3

P1 P2

P4 P3

P1 P2

P4 = P3

∂S

S

P1 P2

P4 P3

Sq

∂S

S

P1 P2

P4 = P3

∂S

S

P1 = P2

P4 P3
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Approximation of the surface and the density function

Mesh of a spherical cap-crack
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Approximation of the surface and the density function

Mesh of a spherical cap-crack

none of the trapezoidal apexes
belongs to the surface contour

at last one of the apexes
belongs to the contour
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Approximation of the surface and the density function

Approximation of density

The integration is performed in the local coordinate system of each
element. We approximate the density function as follows:

f (y) = yα3

mp∑
k+l=0

ckly
k
2 y

l
3, 0 6 α < 1,

where mp is the degree of a polynomial approximating the density
and ckl are coefficients of the approximation.

For α = 0 and α = 1/2 all integrals may be evaluated recurrently.
Starting integrals are evaluated analytically (α = 0) or by using

Carlson algorithms for elliptic integrals (α = 1/2).

Liliana Rybarska-Rusinek, Dawid Jaworski, Aleksandr Linkov On efficient evaluation of
integrals entering boundary equations of 3D potential and elasticity theory, Journal of

Mathematics and Applications JMA No 37, (2014) (in print)
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Numerical validation

Example: the penny-shaped crack in an infinite medium

We consider the 3-D problem of a single planar crack in an infinite
isotropic linear elastic medium subjected to either normal or shear

far-field stresses.

X
Y

Z

X
Y

Z

X
Y

Z

X
Y

Z

X
Y

Z

X
Y

Z

We approximate the crack by N = 18 (220, 1010, 3932) elements.
The internal, ordinary elements are triangles, edge elements are
trapezoids with different height (h = h4, h = 2h4, h = 4h4).
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Numerical validation

Case 1: penny-shaped crack under normal far-field stresses

Constant approximation Square root appr.

N h/h4 δK rel
1 δumax δurms δK rel

1 δumax δurms

18 10 0.1364 0.2230 0.1697 0.0790 0.1740 0.1317

20 0.1494 0.2670 0.2015 0.0388 0.1576 0.1296

220 10 0.2034 0.2489 0.1014 0.0786 0.1125 0.0550

20 0.1870 0.2304 0.0947 0.0404 0.0791 0.0494

1010 10 0.2081 0.2473 0.0697 0.0701 0.0892 0.0350

20 0.1793 0.2078 0.0577 0.0342 0.0543 0.0267

3932 10 0.2237 0.2444 0.0496 0.0650 0.0827 0.0235

20 0.1757 0.1897 0.0380 0.0276 0.0495 0.0156

40 0.1697 0.1883 0.0356 0.0135 0.0406 0.0155

Table with some results of numerical simulations

δK rel
1 = (|K num

1 − K an
1 | /K an

1 ) , δumax = max |∆unum
i −∆uan

i | /∆uan
i ,

δurms =
√∑

(|∆unum
i −∆uan

i | /∆uan
i )2

/N.
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Numerical validation
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1. Square-root approximation for edge elements brings significantly
better accuracy of calculations. The biggest improvement can be

observed for the K1 .
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Numerical validation
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20 0.1494 0.2670 0.2015 0.0388 0.1576 0.1296

220 10 0.2034 0.2489 0.1014 0.0786 0.1125 0.0550

20 0.1870 0.2304 0.0947 0.0404 0.0791 0.0494

1010 10 0.2081 0.2473 0.0697 0.0701 0.0892 0.0350

20 0.1793 0.2078 0.0577 0.0342 0.0543 0.0267

3932 10 0.2237 0.2444 0.0496 0.0650 0.0827 0.0235

20 0.1757 0.1897 0.0380 0.0276 0.0495 0.0156

40 0.1697 0.1883 0.0356 0.0135 0.0406 0.0155

2. In case of the square-root approximation, results depended not only on
the total number of elements N, but also on the boundary trapezoids

height h.
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Example: the penny-shaped crack in an infinite medium

Elements amount N = 3932
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Case 1: penny-shaped crack under normal far-field stresses

Constant approximation Square root appr.

N h/h4 δK rel
1 δumax δurms δK rel
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3932 10 0.2237 0.2444 0.0496 0.0650 0.0827 0.0235

20 0.1757 0.1897 0.0380 0.0276 0.0495 0.0156

40 0.1697 0.1883 0.0356 0.0135 0.0406 0.0155

3. Influence coefficients evaluation time (Intel i5-2540M, 1 thread):

0.48s vs 0.63s (24% longer) , 10.27s vs 11.36s (10% longer) ,

147.94s vs 157.39s (6% longer) .
26 / 28



Numerical simulation of local field concentration near the contour of a fracture

Numerical validation

Case 2: penny-shaped crack under shear far-field stresses

N h/h4 δumax δurms δKmax
2 δK rms

2 δKmax
3 δK rms

3

18 20 0.1625 0.1305 0.0455 0.0416 0.0536 0.0482

20 0.2790 0.2018 0.1364 0.1294 0.1702 0.1604

220 20 0.0819 0.0490 0.0388 0.0358 0.0616 0.0458

20 0.2454 0.0947 0.1774 0.1686 0.2517 0.2034

1010 20 0.0626 0.0273 0.0454 0.0303 0.0406 0.0366

20 0.2148 0.0583 0.1923 0.1713 0.1988 0.1919

3932 40 0.0452 0.0161 0.0207 0.0126 0.0275 0.0150

40 0.1997 0.0360 0.1685 0.1494 0.1807 0.1718

0 – constant approximation

0 – square-root approximation

27 / 28



Numerical simulation of local field concentration near the contour of a fracture

Numerical validation

Case 2: penny-shaped crack under shear far-field stresses

N h/h4 δumax δurms δKmax
2 δK rms

2 δKmax
3 δK rms

3

18 20 0.1625 0.1305 0.0455 0.0416 0.0536 0.0482

20 0.2790 0.2018 0.1364 0.1294 0.1702 0.1604

220 20 0.0819 0.0490 0.0388 0.0358 0.0616 0.0458
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1010 20 0.0626 0.0273 0.0454 0.0303 0.0406 0.0366
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3932 40 0.0452 0.0161 0.0207 0.0126 0.0275 0.0150

40 0.1997 0.0360 0.1685 0.1494 0.1807 0.1718

The same conclusions
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Numerical validation

Conclusions from 3D numerical examples

the height of the square-root edge elements should be
connected rather with surface geometry than other elements
size;

square-root edge elements are not so computational-
expensive and bring significantly better accuracy of
calculations.

Thank you for attention!
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