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Abstract

The article shows the pioneering role of the British scientist, Professor G.W.Scott
Blair, in the creation of the application of fractional modelling in rheology. Discussion
of his results is presented. His approach is highly recognized by the rheological society
and is adopted and generalized by his successors. Further development of this branch of
Science is briefly described in this article too.
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1. Introduction.

The interest to applications of fractional calculus in modelling of dif-
ferent phenomena in Physics, Chemistry, Biology is rapidly increasing in
the recent three decades. First of all we have to point out the constitutive
modelling of non-Newtonian fluids. The main reason is that the fractional
models give us possibility for simple description of complex behaviour of a
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viscoelastic material. In pioneering (mainly experimental) works of 1940-
1950th, it was discovered, for instance, that the relaxation processes in
some materials exhibit an algebraic decay, which cannot be described in
the framework of the Maxwell model based on exponential behaviour of
the relaxation moduli.

In order to see perspective in the development of fractional models it
is important to understand how such models appear, and what was really
done by the pioneers. Among the works which are in the core of the first
period of the fractional modelling one can single out the series of articles
and monographs by G.W. Scott Blair. His role is not overestimed by the
rheological society (see, e.g. [1], [2]), but anyway, some details of his work
are still of great importance. We propose here an analysis of the results by
G.W. Scott Blair along with their influence on the modern development of
the fractional modelling in rheology.

1.1. Short biography by G.W. Scott Blair

Dr. George William Scott Blair (1902–1987) was born on 23 July 1902,
of Scottish ancestry, in Weybridgein Surrey, England. After graduated a
famous public school at Charterhouse he went to Trinity College Oxford
in 1920, where he studied Chemistry, with Prof. Sir Cyril Hinshelwood as
his tutor. He carried out a one-year research project in colloid chemistry to
complete his master thesis with honour degree.

After graduating Scott Blair was employed as a colloid chemist with a
Manchester firm of Henry Simon, working there on the viscometry of flour
suspensions, publishing his first rheology paper in 1927. In 1926 he was
offered a post in the Physics Department of the Rothamsted Experimental
Station, where he was working on the flow properties of soils and clays until
1937. It was there, where he made with his colleagues the first quantitative
study of so called sigma-phenomenon, which was originally described by
Bingham and Green in 1919. Schofield and Scott Blair (see [3]) studied this
phenomenon from 1930 at Rothamsted for soil and clay pastes and named
it “sigma effect”. These studies were probably unknown to Fȧhraeus and
Lidquist, who first discovered the sigma effect for blood, referred to as the
“Fȧhraeus-Lindquist phenomenon”. At this period some preliminary exper-
iments were provided by Scott Blair which led him later to the necessity
to consider anomalous relationship between stress, strain and time (see,
e.g., [4]).

In 1929 Scott Blair took up a Rockefeller Fellowship at Cornell Univer-
sity in Ithica, New York state. He worked there on the flow of potter’s clay
and developed a means of measuring its plasticity. He attended the inaugu-
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ral meeting of Society of Rheology in December 1929 in Washington DC,
met there all pioneers of Rheology, Eugune Bingham and Markus Reiner
among them, and many became his life-time friends.

After returning to Rothamsted, Scott Blair made rheological research
on honey and flour doughs. He also studied together with the well-known
psychologist David Katz, psychophysical problems in bread making. His
interest in psychology led him, together with F.M.V. Coppen, to initiate a
new field, for which he coined the word “psychorheology”. It is considered
as one of the fields of biorheology.

In 1936 he submitted his PhD thesis to the University of London, and it
was examined by Prof. Freundlich. The same institution later awarded him
a D.Sc. for his labours in rheology (probably the first ever rheology D.Sc.)
In 1937 he joined National Institute for Research in Dairying, University
of Reading as a head of Chemistry but soon took over the newly formed
Physics Department and remained in that position until his retirement
thirty years later.

In 1940 the British Rheological Society was founded. Scott Blair played
a prominent role and took active part in the development of rheology. He
was a Founder-Member and, later, president of the British Society of Rheol-
ogy (1949–1951). He took part in the organization of the First International
Congress on Rheology, held at Scheveningen, Holland, in 1948. He was a
Secretary of the Second International Congress on Rheology in Oxford in
1953 and a member of Committee on Rheology, set up by the Interna-
tional Council of Scientific Union. Scott Blair was given to flights of fancy
into psychorheology, fractional differentiation etc. In 1969 he was awarded
the Poiseuille Gold Medal of the International Society of Haemorheology
(now Biorheology) and in 1970 he received the Founders Gold Medal of
the British Society of Rheology. Together with J. Burgers he published a
monograph on rheological nomenclature [5]. For many years Scott Blair was
the Chairman of the British Standard Institute Committee on Rheological
Nomenclature.

During almost a half of century George W. Scott Blair was one of the
leading rheologists. Beginning from 1957 Scott Blair devoted his experimen-
tal and theoretical work entirely to hemorheology. Since the foundation of
the International Society of Hemorheology in Reykjavik, Iceland in 1966,
he was a member of its Council and acted as Chairman of its Committee
on Standards and Terminology. After he retired he worked on the flow and
coagulation of blood at the Oxford Haemophilia Centre.

Scott Blair was very active in publication and editorial work. He was
a co-founder of the Journal “Biorheology” and its Co-Editor-in-Chief from
its inception in November 1959 to December 1978 (see [6]). The books and

3



S. Rogosin et al.

research papers of Scott Blair were donated to the British Society of Rheol-
ogy and later deposited in the Library of Aberystwyth University in early
1980’s. The collection has over 550 books and its aim is to develop this
“into an up-to-date library of rheological literature available to all mem-
bers of Society”. Rheology Abstracts and the British Society of Rheology
Bulletin are two journals published by/for the Society which form an im-
portant of the Collection. The books and journals catalogued online (access
via http://primo.aber.ac.uk).

2. Rheology and Psychophysics

It was Professor Bingham who had chosen the name “Rheology” for
this branch of the Science and gave the definition of it: “The Science of
Deformation and Flow of Matter” (see [7]) motivated by Heraclitus’ quote
“παντα ρει” (“everything flows”). Rheology is one of the very few disci-
plines having exact day of its birth, April 29, 1929, when the preliminary
scope of the Society of Rheology was set up by a committee met at Colum-
bus, Ohio. Anyway, the ancient Egyptian scientist Amenemhet (ca. 1600
BC), who made the earliest application of the viscosity effect, can be con-
sidered as the first rheologist (see, e.g., [8]).

The observables in rheology are deformations or strains, and the changes
of strains in time. Changes of strains in time constitute a flow. Thus, these
changes are generally associated with internal flow of certain kind. States of
stress are inferred either from the comparative strain behaviour of complex
and simple systems in interaction or from the behaviour of a known mass
in the gravitational field. In physical testing, stresses (S), strains (σ) or

their differentials with respect to time
(
Ṡ, σ̇

)
are normally held constant,

leaving either a length to be measured, or the time (t).
There is a group of fluids which is characterized by a coefficient of vis-

cosity for a specific temperature. These fluids, known as Newtonian fluids,
were singled out by Newton who proposed the definition of resistance (or
viscosity in modern language) of an ideal fluid. Pioneering work on the laws
of motion for real (i.e. non-ideal) fluids with finite viscosities was carried out
by Navier [9] and later by Stokes [10]. The Navier-Stokes equation enabled,
among other things, prediction of velocity distributions and flow between
rotating cylinders and cylindrical tubes (see [2]).

Nowadays rheology generally accounts for the behaviour of non-
Newtonian fluids, by characterizing the minimum number of functions that
are needed to relate stresses with rate of change of strains or strain rates.
This kind of fluids is called Newtonian since Newton’s introduction the
concept of viscosity.
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In practice, rheology is concerned with extending continuum mechan-
ics to characterize flow of materials, that exhibits a combination of elastic,
viscous and plastic behaviour by properly combining elasticity and (Newto-
nian) fluid mechanics. In [2] the main directions in the development of the
rheology are described. First of all this is linear viscoelasticity. One of the
most important early contribution in this area is the work by Maxwell [11].
In order to explain the behaviour of the materials which are neither truly
elastic nor viscous he proposed a constant relaxation time (tr) and justi-
fied implicitly the model of a dash-pot and spring in series. Anyway, he
realized that for some materials the assumption of constancy of the relax-
ation time is over-simplification, in these cases tr has to be a function of
stress. Meanwhile, the notion of Maxwell’s units (i.e. pieces of a material
having constant relaxation time) has been widely explored by rheologists.
Later the conception of the “orientation times” τ has been developed (see,
e.g., [12]). It is considered unit stress conditions, supposing that the strain is
approaching to an equilibrium value. Thus, the immediate Hookean strain
is first subtracted and τ is defined as the time taken for the remaining
strain, resulting from the orientation of the chains.

Another direction which was singled out in [2] is the study of generalized
Newtonian materials. This type of fluid behaviour is associated with the
work by Bingham [13] who proposed so called yield stress to describe the
flow of paints. In [14], it has been pointed out the close similarity between
the usual experimental Bingham curve and the curve of a high power-law.
Thus, it shows possibility of existence of systems for which the Bingham
plot gives a fairer and simpler account of the data.

The study of non-linear viscoelasticity started at the begining of XXs
century, when the area of rheology was most rapidly grown (see, e.g. [2]).
Thus, Poynting [15] in his experiment discovered that loaded wires increased
by a length that was proportional to the square of the twist, what did not
correspond to the usual expectation of the linear viscoelasticity theory.
Probably the first theoretical work on non-linear viscoelasticity was done
by Zaremba [16], who extended linear theory to the non-linear regime by
introducing corotational derivative in order to incorporate a frame of ref-
erence that was translating and rotating with the material. More extended
description of the results in non-linear viscoelasticity can be found in [2]
(see also [17], [18] and references therein).

Not all properties of flowing matter can be interpreted in term of real
rheological sense. In this case psychophysical approach with its psychophys-
ical experiments can be helpful. Psychophysics is defined as the scientific
study of the relation between stimulus and sensation (see, e.g. [19]). Psy-
chophysicists usually employ experimental stimuli that can be objectively
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measured. Psychophysical experiments have traditionally used three meth-
ods for testing subjects’ perception in stimulus detection and difference
detection experiments: the method of limits, the method of constant stim-
uli and the method of adjustment.

G.W. Scott Blair widely used psychophysical experiments in his research
(see [20]). Therefore, it is interesting to recall how he described the role of
psychophysics in rheology (see [7]): “The complex and commercially impor-
tant rheological “properties” of many industrial materials are still assessed
subjectively by handling in factory and are expressed in terms “body”,
“firmness”, “spring”, “deadness”, shortness”, “nerve”, etc. - concepts which
cannot be interpreted ... in terms of simple rheological properties at all. In
view of this fact ... it is clearly advisable to know something of the accuracy
with which these handling judgements can be made and, by bulking suffi-
ciently large numbers of data together so that reproducibility is ensured,
to attempt to correlate the entities so derived with manageable functions
of S : σ : t. A start has been made in this direction and not only have
a number of reproducible regularities been observed, but the information
obtained has laid the foundations of a theory of “Quasi-properties” which it
is hoped will facilitate the study of purely “physical” rheology of complex
materials.”

This observation is a core of Scott Blair’s method which he used along
his career.

3. Scott Blair Fractional Element

3.1. Nutting’s Law

In 1921 Nutting reported (see [21]) about his observation that mechani-
cal strains appeared at the deformation of the viscoelastic materials decreas-
ing as power-type functions in time. From a series of experiments, which
covered a range of materials from the elastic solid to the viscous fluid, Nut-
ting suggested a general formula relating shear stress, shear strain and time,
whenever shear stress remains constant:

(1) σ(t) ∼ C∆S · t−α,

with constant order α ∈ (0, 1) which is close to 1/2 for many materials (see
also his more later work [22], [23]). This conclusion was in a strong con-
tradiction to the standard exponential law. Later the Nutting’s observation
was justified by Gemant who studied the properties of viscoelastic mate-
rials under harmonic load. It was shown that the memory function η(t)
can have power-type relaxation behaviour proportional to t−3/2. In 1950
Gemant published a series of 16 articles entitled “Frictional Phenomena”
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in Journal of Applied Physics since 1941 to 1943, which were collected in
a book of the same title [24]. In his eighth chapter-paper [25, p. 220], he
referred to his previous articles [26], [27] for justifying the necessity of frac-
tional differential operators to compute the shape of relaxation curves for
some elasto-viscous fluids.

Gemant has used half-differential, but is his later papers he says
that fractional differential “only occurs as a useful mathematical symbol,
whereas the underlying elementary process, whatever it may be, will prob-
ably contain differential quotient of an integral order”.

Scott Blair surely knew the attempts by Gemant (see, e.g., [28]) to gen-
eralize Maxwell’s theory by changing various (but integer) powers in com-
plex modulus of the Maxwell Fluid Model to fractional powers. In fact, Scott
Blair (together with Coppen) also came to the form of Nutting equation,
but from another consideration. They argued that the material properties
are determined by various states between an elastic solid and a viscous
fluid, rather than a combination of an elastic and a viscous element as pro-
posed by Maxwell. In [29] it was pointed out that, since for Hookian solids,
strain is proportional to stress and to unit power of time, for intermediate
materials, it might be expected to be proportional to stress and to some
fractional power of time with exponent α, 0 < α < 1 and described this
relation in the form

(2) ψ = Sβσ−1tα,

where proportionality coefficient ψ is a constant. Derived in this way the
equation (2) looks entirely empirical, tough the fundamental significance
of α (which is called the dissipation coefficient) is shown in psychophysical
experiments described by Scott Blair and Coppen (see [30], [31], [32] and
[33]).

A comparison of the partially differentiated Nutting equation and
Maxwell’s equation may be written (see [34]), namely, for Nutting:a

(3) −
(
∂S

∂t

)
σ

=
α

β

S

t
,

and for Maxwell:

(4) −
(
∂S

∂t

)
σ

=
S

tr
.

Since Nutting equation gives t = ψ1/αS−β/ασ1/α, it is apparent that the
Nutting treatment postulates a single relaxation time proportional to a

aThe suffix σ indicates shear strains.
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power of the stress. This is simplest possible way of implementing Maxwell’s
suggestion that relaxation time tr may be some function of stress. From
the other side it justifies the believe that the use of fractional calculus in
description of processes toward equilibrium is necessary if one has to keep
the Newtonian time scale.

3.2. Scott Blair’s fractional model

It was suggested in [32] that, in considered cases, comparative firmness is
judged neither by σ, nor by σ̇, nor by any mixture of these two magnitude,
but by some intermediate entity, namely by fractional derivative.b More
exactly, he wrote: The general constitutive equation “... is applicable to
integral values of n but a more general equation may be used even n is a
fraction.The numerical coefficient is expressed as a quotient of Γ-functions
and may be written

(5)
δnσ

δtn
=

Γ(k + 1)

Γ(k − n+ 1)
tk−nΨ−1S.

The expression Γ(k+1) is given by

∞∫
0

e−xxk dx ...”. This model was reported

also by Scott Blair in Nature [35].
In his work Scott Blair did not specify what kind of fractional derivative

he used. From the way how he has calculated derivative of any power we
can conclude that this is the standard Riemann-Liouville derivative of non
integer-order. In fact for this derivative in modern notation we have

(6) Dµ
0+t

α =
Γ(α+ 1)

Γ(α+ 1− µ)
tα−µ α > −1 , µ ≥ 0 ,

with the correspondence n → µ and k → α. In practice the fractional
derivative of the power law was already used by Euler.

It is quite instructive to cite some words by Scott-Blair quoted by Sti-
assnie in their correspondence, see [36]: I was working on the assessing
of firmness of various materials (e.g. cheese and clay by experts handling
them) these systems are of course both elastic and viscous but I felt sure
that judgements were made not on an addition of elastic and viscous parts
but on something in between the two so I introduced fractional differentials
of strain with respect to time. Later, in the same letter Scott-Blair added:

bIn fact, few misprints had been made in [32] later corrected by Scott Blair. Thus,
in the original reprint of [32] in the Scott Blair reading room one can find hand-written
corrections made by Scott Blair.
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I gave up the work eventually, mainly because I could not find a definition
of a fractional differential that would satisfy the mathematicians.

The above said Principle of Intermediacy was discussed in details by
Scott Blair in [34] basing on purely physical grounds. The theory of frac-
tional modelling in rheology is developed by Scott Blair, Veinoglou and
Caffyn in [28]. In [7, p. 30] it is briefly summarized: “... times are normally
defined as equal when “free” Newtonian bodies (or alternatively light) tra-
verse equal (superposable) distances in them. This leads to a a definition
of velocity as the first differential of length with respect to time which, be-
cause of this definition of time equality, is constant for Newtonian bodies;
and to the second differential, called acceleration.

When bodies are not influenced by other bodies, and their velocities
change with time, a force is postulated and defined as rate of change of (ve-
locity × mass). It is long been realized that the Newtonian time scale arbi-
trary (see [37, p. 80]) and in the case of a complex plastic being strained, the
rheologically active units are certainly not independent Newtonian bodies.
It should, therefore, be easy to choose a non-Newtonian time equality defi-
nition which would reduce the entities by which firmness is judged to simple
whole-numberc differential expression. The use of separate time scales for
different materials is not convenient, however, so Newtonian time is used,
but, as a result of this arbitrary procedure, the derived constants cannot
be expected to be built up entirely from whole-number differentials. It is
thus apparent that fractional differential is an essential feature of our whole
mode of approach.”

In [38] are discussed the circumstances under which it is practicable
to express the Nutting equation and its fractional derivatives in a simple
dimensional form. Three main principles of a new proposal are formulated:
(1) the fact that the treatment does not lead to any understanding of struc-
ture of the materials or of their molecular configurations; (2) the only en-
tities are used whose dimensions depend of the nature of of the material;
(3) fractional derivatives and corresponding coefficients are understood as
something intermediate between zero and first derivatives and correspond-
ing coefficients. Scott Blair highly supported (see, it e.g. [14]) the ideas by
Nutting supposing that for that moment it describe a special but very fre-
quently adequate cases. Anyway, he though that the phenomenon dealing
with Nutting equation are related to the fundamental structure of materials.

Fractional derivative of order µ, 0 < µ < 1, with respect to time t of the

cI.e. non-integer order.
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Nutting equation (in the form (2)) gives, using notation (6) (see [32], [28])

(7)
∂µσ

∂tµ
= Dµ

0+t
αψ−1S.

Another way to justify this relation is to introduce quasi-property χ1 by
the Principle of Intermediacy

(8) χ1 = S ÷ ∂µσ

∂tµ
,

since the viscosity can be defined by the relation η = S ÷ dσ
dt , and shear

modulus as n = S ÷ σ.
The relation (8) can be integrated to give

(9) σ = Sβ
(
Atα

′
+Btα

′−1 + Ctα
′−2 + . . .

)
,

where A, B, C etc. are constants. Clearly this equation coincides with
Nutting equation if A� B,C . . ..

It should be noted that, speaking in modern language (see [39]), the
Scott Blair equation is only relevant for special case of power-law creep
functions. Another remark concerns the approach by Scott Blair. It was
criticized by applied mathematicians since only few mathematical explana-
tions were presented in his work (see discussion in Subsec. 3.2). Therefore
from paper to paper he tried to make his idea more understandable. In
particular, he changed his notation which makes certain difficulties to read
Scott Blair’s papers now.

4. Fractional models in rheology

After the first applications of the fractional derivatives in the modelling
of the processes in rheology several other fractional models were proposed to
describe certain rheological phenomenon. We briefly outline here the most
discussed models of such a type.d

Gerasimov [40]e used similar arguments as Scott Blair (as in [32], [28]),
namely, interpolation between Hook and Newton’s law, in order to intro-
duce a rheological constitutive equation in terms of a precise notation of
fractional derivative.

dHere and in what follows we will use modern notations for stress (σ) and strain (ε)
that are not be confused with the corresponding notations used by Scott Blair, namely
(S) for stress and (σ) for strain. Furthermore we will write Dα0+ to denote the Riemann-
Liouville fractional derivative implicitly adopted by Scott Blair.

eWe take liberty to describe the work by Gerasimov following the monograph by
Uchaikin [41].
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He used such equation (see below (10)) for description two models,
namely, the flow of the viscoelastic between two parallel plates, and the
rotational viscoelastic flow between two concentric cylinders. He obtained
an exact solution by using operational method. Gerasimov has started his
consideration by appealing to the Boltzmann equation. He said that from
experiments follow the importance of a special case of the Boltzmann equa-
tion corresponding only to the hereditary part of the stress σ(t). He pointed
out the processes for which σ(t) has a memory depending on the velocity
of all earlier deformations, for which such equation has the form

(10) σ(t) =

∞∫
0

K(τ)ε̇(t− τ)dτ.

For the kernel in this integro-differential relation (relaxation function) he
claimed that for certain materials it can be written as

K(τ) =
A

τα
, A > 0, 0 < α < 1.

Hence, equation (10) can be written as

(11) σ(t) =
κα

Γ(1− α)

∞∫
0

ε̇(t− τ)

τα
dτ.

One can mention that in his representation of the model Gerasimov has
used integration up to ∞. Later in [40] considering concrete mechanical
problems he changed the interval of integration to (0, t).

In [41, Ch. 12] it is discussed how it can be interpreted. If we consider
K(τ) as reaction (response) at the time instant t of the stress on the step-
like deformation of the unit value at the time instant t− τ . Approximating
the smooth function ε(t) by step-like function with jumps ∆ε(tj) at tj and
using linearity principle we get the integral sum

σ(t) =
∑
tj<t

K(t− tj)∆ε(tj),

and taken limit as ∆tj → 0 we arrive at the integral form of the equation

(12) σ(t) =

t∫
0

K(t− t′)dε(t′) =

t∫
0

K(τ)ε̇(t− τ)dτ = A

t∫
0

ε̇(s)ds

(t− s)α
.
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It means that relaxation function K(τ) is defined only for τ > 0.f In par-
ticular, equation (11) for α = 1 gives us the Newton law, and for α = 0
corresponds to Hookean law.

Similar to (10) formulation of the fractional model was proposed by
Slonimsky [42]).

Rabotnov (see [43] and more extended description in his monograph
[44]) presented a general theory of hereditary solid mechanics using integral
equations (see also [45], where the use of integral equations for viscoelastic-
ity was revisited and interjects fractional calculus into Rabotnov’s theory
by the introduction of the spring-pot was presented).

Rabotnov introduced an hereditary elastic rheological model with con-
stitutive equation in form of Volterra integral equation with weakly singular
kernel of special typeg

(13) σ(t) = E

ε(t)− β tα∫
0

Rα(−β, tα − τ)ε(τ)dτ

 ,
where tα is the aging time, α ∈ (−1, 0], β 6= 0, and the kernel R is repre-
sented in the form of power series

(14) Rα(β, x) = xα
∞∑
n=0

βnxn(α+1)

Γ((n+ 1)(α+ 1))
.

Rabotnov’s kernel function Rα(β, x) is related to the well-known Mittag-
Leffler function Eα,β(z) highly explored nowadays in the fractional calculus
and its applications, namely

(15) Rα(β, x) = xαEα+1,α+1(βx
α+1).

In [46] the results by Rabotnov was summarized. It is said, that Rabot-
nov, in his book [44], presented a general theory of hereditary solid mechan-
ics using integral equations. Koeller [45] (see also [39]) reviewed the use of
integral equations for viscoelasticity and interjects fractional calculus into
Rabotnov’s theory by the introduction of the spring-pot, which he used to
generalize the classical models. Meshkov et al. [47] as well as Rossikhin and
Shitikova [48] (see also [49]) described and polularized Rabotnov’s theory.
In particular, they pointed out that Rabotnov’s fractional exponential func-
tion is related to the well known Mittag-Leffler function and they showed

fThus, up to the constant multiplier, the right-hand side of (12) coincides with the
fractional derivative known as Caputo derivative.

gThe integral stress - strain relationship by Rabotnov can be re-interpreted in terms
of the fractional differential constitutive equation of Zener type, see later.
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the equivalence of Rabotnov’s theory to Torvik and Bagley’s fractional poly-
nomial constitutive equation. Further references on Rabotnov’s theory may
be found in [48], [49].

Of course Scott-Blair did not know the Mittag-Leffler function and its
asymptotic behaviours (stretched exponential for short times and power law
for long times). Presumably that Scott-Blair had guessed the behaviour of
the M-L function but he did not have the mathematical background being
overall an experimentalist.

Both Scott Blair’s model (7) and Gerasimov’s model (11) are naturally
considered later as special cases of fractional Maxwell’s model with rheo-
logical constitutive equation of the form

(16) σ(t) + λαDα
0+,tσ(t) = EλβDβ

0+,tε(t), 0 ≤ α ≤ β ≤ 1,

where E is the shear modulus, and λ is the relaxation time. This equation
generalizes celebrating Maxwell equation in which for the first time New-
tonian law for viscous fluid and Hook’s law for elastic solid are combined
to describe the behaviour of visco-elastic media

(17) σ(t) + τDtσ(t) = EτDtε(t).

Partial case of fractional Maxwell’s model is the so-called three-
parametric generalized Maxwell’s model with constitutive equation of the
type

(18) σ(t) + a1D
α
0+,tσ(t) = b0ε(t), 0 < α < 1.

Another popular fractional model with three parameters is the Kelvin-Voigt
fractional model that presumably for the first time was introduced by Ca-
puto [50] in 1967,

(19) σ(t) = b0ε(t) + b1D
α
0+,tε(t), 0 < α < 1.

It is a generalization of the classical Kelvin model having the following
constitutive equation

(20) σ(t) = E [σ(t) + τDtε(t)] .

More general constitutive equation corresponds to the so called frac-
tional Zener model:

(21) σ(t) + a1D
α
0+,tσ(t) = b0ε(t) + b1D

α
0+,tε(t), 0 < α < 1.

formerly introduced in 1971 by Caputo and Mainardi [51]. Theoretical back-
ground for this was done by Bagley and Torvik, see [52], [53]. It has to be
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pointed out that the above considered Rabotnov’s model (13) is equivalent
to the fractional Zener model, see [41].

Sometimes the Poynting-Thomson fractional model is discussed with
rheological constitutive equation of the type
(22)

σ(t)+
E

E0
λα−γDα−γ

0+,tσ(t)+
E

E0
λβ−γDβ−γ

0+,tσ(t) = EλαDα
0+,tε(t)+Eλ

βDβ
0+,tε(t),

(0 ≤ γ ≤ α ≤ β ≤ 1.)
More extended discussion of the fractional models in rheology can be

found in [54], [17], [55], [56], [57].

5. The second generation of fractional modelling in rheology

The development of the fractional differential approach in rheology is
associated with such names as Scott-Blair, Bagley and Torvik, Caputo,
Gorenflo and Mainardi [58], Friedrich, Schiessel and Blumen [59], [56], Met-
zler, Nonnenmacher, Glöckle, Klafter and Schlesinger [60], [61], Koeller [46],
Podlubny and Heymans [62], Rossikhin and Shitikova [47], [48], [49], and
others.

In a series of papers (see, e.g., [52], [53]) Bagley and Torvik extended
the ideas of Gemant, and of Caputo–Mainardi [54]. They have shown that
the complex modulus of many materials can be approximated by fractional
powers in the frequency. They proposed a general fractional constitutive
relation describing visco-elastic behaviour in its different appearance.

This approach has been successfully applied to describe rheological
behaviour of organic glasses, elastomers, polyurethane, polyisobutylene,
monodisperse polybutadiene and solid amorphous polymers in a wide tem-
perature range (see for example [63] and references therein). In [64] and [65]
have been derived equations governing the time-dependent indentation re-
sponse for axisymmetric indenters into a fractional viscoelastic half-space
and have proposed an original method for the inverse analysis of frac-
tional viscoelastic properties and applied to experimental indentation creep
data of polystyrene. The method is based on fitting the time-dependent
indentation data (in the Laplace domain) to the fractional viscoelastic
model response. It is shown that the particular time-dependent response of
polystyrene is best captured by a bulk-and-deviator fractional viscoelastic
model of the Zener type. We shall dwell in details on fractional differential
models of viscoelasticity and then consider a few standard hydrodynamic
problems in the simplest model of this type.

It is impossible to have a complete description of the modern state
in the fractional rheology. We refer the interested readers to the recent

14
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monographs [17], [18], and to the survey paper [66] for some additional
comments on pioneering works in applications of fractional calculus.
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