HELE-SHAW FLOW WITH A SMALL OBSTACLE

Sergei V.Rogosin ${ }^{1, \dagger}$, Gennady Mishuris ${ }^{2}$
${ }^{1}$ Department of Economics, Belarusian State University Nezavisimosti ave 4, 220030 Minsk, Belarus
e-mail: rogosin@bsu.by
${ }^{2}$ Department of Mathematical and Physical Sciences, Aberystwyth University Ceredegion SY23 3BZ, Aberystwyth, UK
e-mail: ggm@aber.ac.uk
\dagger Lecturer
International Conference "Topics of Operator Theory" (STOP-2011), Instituto Superior Téchnico, Lisboa, Portugal,

June 23-29, 2011
S.R. is partially supported by International Travel Grants - 2010/R2 No. 45239 Travel for Collaboration granted by the Royal Society, and by "Belarusian Fund for Fundamental Scientific Research', G.M. is thankful for support from the FP7-PEOPLE-2009-IAPP grant PIAP-GA-2009-251475 HYDROFRAC.

The aim:

Ω to provide an asymptotic analysis of the Hele-Shaw moving boundary value problem with a small obstacle in the flow.

Plan:

© historical remarks;
A geometry corresponding to the considered problem;
© real-variable Hele-Shaw model in a domain with an obstacle;
© Maz'ya \& Movchan asymptotic representation of Green's function;
© asymptotic study of the solution to the Hele-Shaw boundary value problem in a domain with an obstacle.

Few historical remarks.

- H. S. Hele-Shaw (1898) - description of an experiment in 2D cell
- S. L. Leibenson (1932) - application in oil production
- Yu. P. Vinogradov, P. P. Kufarev (1948) - complex Hele-Shaw model
- S. Richardson (1972) - rediscovering of complex Hele-Shaw model
- P. Ya. Polubarinova-Kochina (1945), L. A. Galin (1945) - first exact solutions to Hele-Shaw problem
- B. Gustafsson (1984) - local existence of rational solution
- B. Gustafsson (1984) - differential equation for Hele-Shaw model
- B. Gustafsson (1985) - existence of weak solution
- M. Reissig, L. von Wolfersdorf (1993) - new proof of local existence
- P. G. Saffman (1986), S. Tanveer (1993) - surface tension regularization
- L. Romero (1981) - kinetic undercooling regularization
- J. Escher \& G.Simonett (1997) - maximum regularity
- S.N. Antontsev, C.R. Gonçalves, A.M. Meirmanov (2003) - existence and uniqueness of the classical solution

Description of the geometry.

Viscous incompressible fluid occupies a doubly connected domain $D_{1}(t)$ at a time instant $t \geq 0$.

Internal domain F is a fixed small obstacle (hole).
The simply connected domain without hole will be denoted $D(t)$.
It is supposed that $F \subset D(0)$ has a nonempty interior, and the diameter of obstacles $\delta:=\operatorname{diam} F$ is positive.
$D(0)$ is supposed to be open bounded set with a smooth boundary and

$$
\begin{equation*}
\text { dist }\{\partial F, \partial D(0)\}=2 d>0 . \tag{1}
\end{equation*}
$$

Without loss of generality we can assume that δ and $d(\delta<d)$ are dimensionless parameters and that $\operatorname{diam} D(0)=1$.

Derivation of the model.

Two-dimensional potential flow of incompressible fluid in the Hele-Shaw cell, i.e. in a gap between two parallel plates of distance h.

The flow is modelled by the velocity field $\mathbf{V}=\left(V_{1}, V_{2}, V_{3}\right)$ in $D_{1}(t) \in \mathbb{R}^{2}$:

$$
\begin{equation*}
\frac{\partial \mathbf{V}}{\partial t}=0, V_{3}=0 \tag{2}
\end{equation*}
$$

$\mathbf{V}=\left(V_{1}, V_{2}\right)$ is proportional to the pressure p gradient:

$$
\begin{equation*}
\mathbf{V}=-\frac{h^{2}}{12 \mu} \nabla p \tag{3}
\end{equation*}
$$

where μ is the viscosity coefficient of the fluid. For h and μ being constant

$$
\begin{gather*}
\Delta p=0 . \tag{4}\\
p(z, t) \sim-\frac{Q(t)}{2 \pi} \log \left|z-z_{0}\right|, \quad|z| \rightarrow z_{0} . \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial p}{\partial n}=0, z \in \partial F, \tag{6}
\end{equation*}
$$

Surface tension dynamic boundary condition

$$
\begin{equation*}
p(z)=0, \quad z \in \Gamma(t)=\partial D(t), \tag{7}
\end{equation*}
$$

and kinematic boundary condition

$$
\begin{equation*}
\frac{d \Gamma}{d t}=\mathbf{V}, \quad z \in \Gamma(t)=\partial D(t) \tag{8}
\end{equation*}
$$

Together with Hele-Shaw equation it gives

$$
\begin{equation*}
\frac{d \Gamma}{d t}=-\frac{h^{2}}{12 \mu} \nabla p . \tag{9}
\end{equation*}
$$

Real-variable Hele-Shaw model.

New unknown one-parametric family of \mathcal{C}^{2}-diffeomorphisms
$w(s, t)=(u(s, t), v(s, t)): \partial \mathbb{U} \times I \rightarrow \Gamma(t), \quad \mathbb{U}=\left\{s=\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}:|z|<1\right\}$.

The function $w(s, t)$ in (10) determines an unknown parametrization of the free boundary $\Gamma(t)$
(i) $w(s, t) \in \Gamma(t)$ for all $(s, t) \in \partial \mathbb{U} \times I$,
(ii) $w(\cdot, t): \partial \mathbb{U} \rightarrow \Gamma(t)$ is a \mathcal{C}^{2}-diffeomorphism for each fixed $t \in I$,
(iii) $w(\cdot, \cdot) \in \mathcal{C}^{2}\left(\partial \mathbb{U} \times I ; \mathbb{R}^{2}\right)$.

It follows from the relations (4)-(7) that for each fixed appropriate t the unknown pressure p coincides up to constant factor with Green's function of the operator $-\triangle$ in the doubly connected domain $D_{1}(t)$ with the homogeneous Neumann data on the fixed boundary ∂F and the homogeneous Dirichlet data on the free boundary $\Gamma(t)$.

$$
\begin{equation*}
p=Q \cdot \mathcal{G}_{D_{1}(t)} \tag{11}
\end{equation*}
$$

and $\mathcal{G}_{D_{1}(t)}$ is the solution of the following mixed boundary value problem

$$
\begin{gather*}
\triangle \mathcal{G}_{D_{1}(t)}\left(z, z_{0}\right)+\delta_{0}\left(z-z_{0}\right)=0, \quad z \in D_{1}(t) \tag{12}\\
\mathcal{G}_{D_{1}(t)}\left(z, z_{0}\right)=0, \quad z \in \Gamma(t) \tag{13}\\
\frac{\partial \mathcal{G}_{D_{1}}(t)}{\partial n}\left(z, z_{0}\right)=0, \quad z \in \partial F \tag{14}
\end{gather*}
$$

Real-variable formulation in terms of diffeomorphisms. Problem $\left(\mathbf{H S}_{0}\right)$. Find a pair $\left\{w(s, t) ; \mathcal{G}\left(z, z_{0} ; t\right)\right\}$, such that $w(s, t)$: $\partial \mathbb{U} \times I \rightarrow \mathbb{R}^{2}$ is a \mathcal{C}^{2}-diffeomorphism satisfying
(i) $w(s, t) \in \Gamma(t)$ for all $(s, t) \in \partial \mathbb{U} \times I$;
(ii) $w(\cdot, t): \partial \mathbb{U} \rightarrow \Gamma(t)$ is a \mathcal{C}^{2}-diffeomorphism for each fixed $t \in I$;
(iii) $w^{(0)}(s)=w(s, 0)$ is a given \mathcal{C}^{2}-diffeomorphism of the unit circle $\partial \mathbb{U}$, which describes the boundary $\Gamma(0)$ of initial domain $D_{1}(0)$;
(iv) $\mathcal{G}\left(z, z_{0} ; t\right)$ is Green's function of the operator $-\triangle$ in the doubly connected domain $D_{1}(t)$ with the homogeneous Neumann data on the fixed boundary ∂F and the homogeneous Dirichlet data on the free boundary $\Gamma(t)$;
(v) $\partial_{t} w(s, t)=-\frac{Q h^{2}}{12 \mu} \cdot \nabla \mathcal{G}\left(w(s, t), z_{0} ; t\right)$ for all $(s, t) \in \partial \mathbb{U} \times I$.

Mazya-Movchan asymptotic results.
Let $\Omega \subset \mathbb{R}^{2}$ be a bounded open plane domain with compact closure $\mathrm{cl} \Omega$ and a smooth boundary $\partial \Omega$. Let ω be a bounded domain in \mathbb{R}^{2} with compact closure $c l \omega$ and smooth boundary $\partial \omega$. Let the origin O belongs to the intersection of Ω and ω, i.e. $O \in \Omega \cap \omega$. $\omega_{\varepsilon}=\left\{z \in \mathbb{R}^{2}: \varepsilon^{-1}(z-O) \in\right.$ $\omega\}$, where ε is a small positive parameter, such that $\omega_{\varepsilon} \subset \Omega$. Let Ω_{ε} be an open doubly connected domain $\Omega_{\varepsilon}=\Omega \backslash \operatorname{cl} \omega_{\varepsilon}$.
Denote by $\mathcal{G}_{\varepsilon}$ Green's function of the operator $-\triangle$ with the Dirichlet data on $\partial \Omega$ and the Neumann data on ω_{ε}, namely

$$
\begin{gather*}
\triangle_{z} \mathcal{G}_{\varepsilon}(z, \zeta)+\delta(z-\zeta)=0, \quad z, \zeta \in \Omega_{\varepsilon} \tag{15}\\
\mathcal{G}_{\varepsilon}(z, \zeta)=0, \quad z \in \partial \Omega, \zeta \in \Omega_{\varepsilon} \tag{16}\\
\frac{\partial \mathcal{G}_{\varepsilon}}{\partial n_{z}}(z, \zeta)=0, \quad z \in \partial \omega_{\varepsilon}, \zeta \in \Omega_{\varepsilon} \tag{17}
\end{gather*}
$$

Let \mathcal{G} be Green's function of the Dirichlet problem for operator $-\triangle$ in Ω

$$
\begin{equation*}
\mathcal{G}(z, \zeta)=\frac{1}{2 \pi} \log \frac{1}{|z-\zeta|}-\mathcal{H}(z, \zeta), \tag{18}
\end{equation*}
$$

where \mathcal{H} is a unique solution to the following problem

$$
\begin{gather*}
\triangle_{z} \mathcal{H}(z, \zeta)=0, \quad z, \zeta \in \Omega \tag{19}\\
\mathcal{H}(z, \zeta)=\frac{1}{2 \pi} \log \frac{1}{|z-\zeta|}, \quad z \in \partial \Omega, \zeta \in \Omega . \tag{20}
\end{gather*}
$$

Introduce auxiliary variables (scaled coordinate) $\xi=\frac{1}{\varepsilon} z, \eta=\frac{1}{\varepsilon} \zeta$.

Define the Neumann function \mathcal{N} of the exterior Neumann problem for operator $-\triangle$ in the domain $\mathbb{R}^{2} \backslash \omega$

$$
\begin{equation*}
\mathcal{N}(\xi, \eta)=\frac{1}{2 \pi} \log \frac{1}{|\xi-\eta|}-h_{N}(\xi, \eta) \tag{21}
\end{equation*}
$$

where h_{N} is a unique solution to the following problem (regular part of the Neumann function)

$$
\begin{gather*}
\triangle_{\xi} h_{N}(\xi, \eta)=0, \quad \xi, \eta \in \mathbb{R}^{2} \backslash c l \omega, \tag{22}\\
\frac{\partial h_{N}}{\partial n_{\xi}}(\xi, \eta)=\frac{1}{2 \pi} \frac{\partial}{\partial n_{\xi}} \log \frac{1}{|\xi-\eta|}, \quad \xi \in \partial \omega, \eta \in \mathbb{R}^{2} \backslash c l \omega, \tag{23}\\
h_{N}(\xi, \eta) \rightarrow 0, \quad \text { as }|\xi| \rightarrow \infty, \quad \eta \in \mathbb{R}^{2} \backslash c l \omega . \tag{24}
\end{gather*}
$$

Introduce the vector dipole fields $\mathcal{D}(\xi)=\left(\mathcal{D}_{1}(\xi), \mathcal{D}_{2}(\xi)\right)^{T}$:

$$
\begin{gather*}
\triangle \mathcal{D}(\xi)=0, \quad \xi \in \mathbb{R}^{2} \backslash c l \omega \tag{25}\\
\frac{\partial \mathcal{D}_{j}}{\partial n}(\xi)=n_{j}, \quad \xi \in \partial \omega, j=1,2 \tag{26}\\
\mathcal{D}_{j}(\xi) \rightarrow 0, \quad \text { as }|\xi| \rightarrow \infty, \quad j=1,2 \tag{27}
\end{gather*}
$$

where n_{1}, n_{2} are components of the inward unit normal vector to $\partial \omega$. The dipole fields $\mathcal{D}_{j}, j=1,2$, satisfy the asymptotic representation for sufficiently large $|\xi|$

$$
\begin{equation*}
\mathcal{D}_{j}(\xi)=\frac{1}{2 \pi} \sum_{k=1}^{2} \frac{\mathcal{P}_{j k} \xi_{k}}{|\xi|^{2}}+O\left(|\xi|^{-2}\right) \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{P}_{j k}=-\delta_{j k} \cdot \operatorname{meas}(\omega)-\int_{\mathbb{R}^{2} \backslash \omega} \nabla \mathcal{D}_{j}(\xi) \cdot \nabla \mathcal{D}_{k}(\xi) d \xi \tag{29}
\end{equation*}
$$

(Mazya-Movchan, 2009) Green's function $\mathcal{G}_{\varepsilon}$ for the boundary value problem (15)-(17) with the Dirichlet data on $\partial \Omega$ and the Neumann data on $\partial \omega_{\varepsilon}$ has the asymptotic representation

$$
\begin{equation*}
\mathcal{G}_{\varepsilon}(z, \zeta)=\mathcal{G}(z, \zeta)+\mathcal{G}_{\varepsilon}^{*}(z, \zeta)+r_{\varepsilon}(z, \zeta), \tag{30}
\end{equation*}
$$

where \mathcal{G} is Green's function of the Dirichlet problem for Laplace equation in the domain Ω, the principal part $\mathcal{G}_{\varepsilon}^{*}$ of the asymptotic representation is defined in terms of Neumann function \mathcal{N}, regular part \mathcal{H} of Green's function \mathcal{G} and the dipole field \mathcal{D}

$$
\begin{equation*}
\mathcal{G}_{\varepsilon}^{*}(z, \zeta)=\mathcal{N}\left(\frac{z}{\varepsilon}, \frac{\zeta}{\varepsilon}\right)+\frac{1}{2 \pi} \log \left(\frac{|z-\zeta|}{\varepsilon}\right)+\varepsilon \mathcal{D}\left(\frac{z}{\varepsilon}\right) \cdot \nabla_{z} \mathcal{H}(0, \zeta)+\varepsilon \mathcal{D}\left(\frac{\zeta}{\varepsilon}\right) \cdot \nabla_{\zeta} \mathcal{H}(z, 0), \tag{31}
\end{equation*}
$$

and the remainder satisfies the following uniform inequality

$$
\begin{equation*}
\left|r_{\varepsilon}(z, \zeta)\right| \leq \text { const } \cdot \varepsilon^{2} . \tag{32}
\end{equation*}
$$

Corollaries:

1. (Mazya-Movchan, 2009) Let min $\{|z|,|\zeta|\}>2 \varepsilon$. Then the following asymptotic formula holds:

$$
\begin{align*}
& \mathcal{G}_{\varepsilon}(z, \zeta)=\mathcal{G}(z, \zeta)-\frac{\varepsilon^{2}}{4 \pi^{2}} \frac{z^{T}}{|z|^{2}} \mathcal{P} \frac{\zeta}{|\zeta|^{2}}+ \tag{33}\\
&+\frac{\varepsilon^{2}}{2 \pi}\left\{\frac{z^{T}}{|z|^{2}} \mathcal{P} \nabla_{z} \mathcal{H}(0, \zeta)+\frac{\zeta^{T}}{|\zeta|^{2}} \mathcal{P} \nabla_{\zeta} \mathcal{H}(z, 0)\right\}+ \\
&+ \varepsilon^{2} O\left(\frac{1}{|z|^{2}}+\frac{1}{|\zeta|^{2}}\right),
\end{align*}
$$

where \mathcal{H} is the regular part of Green's function \mathcal{G} in the domain Ω defined by (19)-(20), and \mathcal{P} is the dipole matrix for ω defined in (29).
2. (Mazya-Movchan, 2009) For all $z, \zeta \in \Omega_{\varepsilon}$ asymptotic formula (30) can be presented in the following form:

$$
\begin{align*}
& \mathcal{G}_{\varepsilon}(z, \zeta)= \frac{1}{2 \pi} \log \frac{1}{|z-\zeta|}-h_{N}\left(\frac{1}{\varepsilon} z, \frac{1}{\varepsilon} \zeta\right)-\mathcal{H}(0,0)- \tag{34}\\
&-\left(z-\varepsilon \mathcal{D}\left(\frac{1}{\varepsilon} z\right)\right) \cdot \nabla_{z} \mathcal{H}(0, \zeta)-\left(\zeta-\varepsilon \mathcal{D}\left(\frac{1}{\varepsilon} \zeta\right)\right) \cdot \nabla_{\zeta} \mathcal{H}(z, 0)+ \\
&+O\left(\varepsilon^{2}+|z|^{2}+|\zeta|^{2}\right) .
\end{align*}
$$

Representation of the solution.

$$
\begin{equation*}
F=\omega_{\mathcal{E}}, \quad D(t)=\Omega . \tag{35}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathcal{G}\left(z, z_{0} ; t\right)=\mathcal{G}_{\varepsilon}\left(z, z_{0}\right) . \tag{36}
\end{equation*}
$$

This function have to satisfy the following relations:

$$
\begin{gather*}
\partial_{t} w(s, t)=-\frac{Q h^{2}}{12 \mu} \cdot \nabla_{z} \mathcal{G}_{\varepsilon}\left(w(s, t), z_{0}\right) \text { for all }(s, t) \in \partial \mathbb{U} \times I, \tag{37}\\
w(s, 0)=w^{(0)}(s), \quad s \in \partial \mathbb{U}, \tag{38}
\end{gather*}
$$

where $w^{(0)}(s) \in \mathcal{C}^{2}(\partial \mathbb{U})$ is a given function.

We consider four essentially different situations:
(a) the source z_{0} and ALL points $z=w(s, t)$ of the boundary $\partial \Gamma(0)$ of the initial domain $D_{1}(0)$ are distant from the boundary $\partial \omega_{\varepsilon}$ of the obstacle;
(b) the source z_{0} is close to the boundary $\partial \omega_{\varepsilon}$ of the obstacle, but ALL points $z=w(s, t)$ of $\partial \Gamma(0)$ are distant from $\partial \omega_{\varepsilon}$;
(c) the source z_{0} and SOME points $z=w(s, t)$ of $\partial \Gamma(0)$ are close to the boundary $\partial \omega_{\varepsilon}$ of the obstacle; we consider those points $z=w(s, t)$ which are distant from $\partial \omega_{\varepsilon}$;
(d) the source z_{0} and SOME points $z=w(s, t)$ of $\partial \Gamma(0)$ are close to the boundary $\partial \omega_{\varepsilon}$ of the obstacle; we consider those points $z=w(s, t)$ which are close to $\partial \omega_{\varepsilon}$.

