HELE-SHAW FLOW WITH A SMALL OBSTACLE

Sergei V.Rogosin^{1,†}, Gennady Mishuris²

 ¹ Department of Economics, Belarusian State University Nezavisimosti ave 4, 220030 Minsk, Belarus e-mail: rogosin@bsu.by
 ² Department of Mathematical and Physical Sciences, Aberystwyth University Ceredegion SY23 3BZ, Aberystwyth, UK e-mail: ggm@aber.ac.uk

[†] Lecturer

International Conference

"Topics of Operator Theory" (STOP-2011), Instituto Superior Téchnico, Lisboa, Portugal,

June 23-29, 2011

S.R. is partially supported by International Travel Grants - 2010/R2 No. 45239 Travel for Collaboration granted by the Royal Society, and by "Belarusian Fund for Fundamental Scientific Research", G.M. is thankful for support from the FP7-PEOPLE-2009-IAPP grant PIAP-GA-2009-251475 HYDROFRAC.

The aim:

 \heartsuit to provide an asymptotic analysis of the Hele-Shaw moving boundary value problem with a small obstacle in the flow.

Plan:

- ♠ historical remarks;
- ♠ geometry corresponding to the considered problem;
- ♠ real-variable Hele-Shaw model in a domain with an obstacle;
- ♠ Maz'ya & Movchan asymptotic representation of Green's function;
- ♠ asymptotic study of the solution to the Hele-Shaw boundary value problem in a domain with an obstacle.

Few historical remarks.

- H. S. Hele-Shaw (1898) description of an experiment in 2D cell
- S. L. Leibenson (1932) application in oil production
- Yu. P. Vinogradov, P. P. Kufarev (1948) complex Hele-Shaw model
- S. Richardson (1972) rediscovering of complex Hele-Shaw model
- P. Ya. Polubarinova-Kochina (1945), L. A. Galin (1945) first exact

solutions to Hele-Shaw problem

- B. Gustafsson (1984) local existence of rational solution
- B. Gustafsson (1984) differential equation for Hele-Shaw model
- B. Gustafsson (1985) existence of weak solution
- M. Reissig, L. von Wolfersdorf (1993) new proof of local existence
- P. G. Saffman (1986), S. Tanveer (1993) surface tension regularization
- L. Romero (1981) kinetic undercooling regularization
- J. Escher & G.Simonett (1997) maximum regularity
- S.N. Antontsev, C.R. Gonçalves, A.M. Meirmanov (2003) existence and uniqueness of the classical solution

Description of the geometry.

Viscous incompressible fluid occupies a doubly connected domain $D_1(t)$ at a time instant $t \ge 0$.

Internal domain F is a fixed small obstacle (hole).

The simply connected domain without hole will be denoted D(t).

It is supposed that $F \subset D(0)$ has a nonempty interior, and the diameter of obstacles $\delta := \operatorname{diam} F$ is positive.

D(0) is supposed to be open bounded set with a smooth boundary and

$$dist \{\partial F, \partial D(0)\} = 2d > 0.$$
(1)

Without loss of generality we can assume that δ and d ($\delta < d$) are dimensionless parameters and that diam D(0) = 1.

Derivation of the model.

Two-dimensional potential flow of incompressible fluid in the Hele-Shaw cell, i.e. in a gap between two parallel plates of distance h.

The flow is modelled by the velocity field $\mathbf{V} = (V_1, V_2, V_3)$ in $D_1(t) \in \mathbb{R}^2$:

$$\frac{\partial \mathbf{V}}{\partial t} = 0, \ V_3 = 0. \tag{2}$$

 $V = (V_1, V_2)$ is proportional to the pressure p gradient:

$$\mathbf{V} = -\frac{h^2}{12\mu} \nabla p, \tag{3}$$

where μ is the viscosity coefficient of the fluid. For h and μ being constant

$$\triangle p = 0. \tag{4}$$

$$p(z,t) \sim -\frac{Q(t)}{2\pi} \log |z - z_0|, \quad |z| \to z_0.$$
 (5)

$$\frac{\partial p}{\partial n} = 0, \ z \in \partial F,\tag{6}$$

Surface tension dynamic boundary condition

$$p(z) = 0, \quad z \in \Gamma(t) = \partial D(t),$$
 (7)

and kinematic boundary condition

$$\frac{d\Gamma}{dt} = \mathbf{V}, \quad z \in \Gamma(t) = \partial D(t). \tag{8}$$

Together with Hele-Shaw equation it gives

$$\frac{d\Gamma}{dt} = -\frac{h^2}{12\mu} \nabla p. \tag{9}$$

Real-variable Hele-Shaw model.

New unknown one-parametric family of C^2 -diffeomorphisms

$$w(s,t) = (u(s,t), v(s,t)) : \partial \mathbb{U} \times I \to \Gamma(t), \quad \mathbb{U} = \{s = (s_1, s_2) \in \mathbb{R}^2 : |z| < 1\}.$$
(10)

The function w(s,t) in (10) determines an unknown parametrization of the free boundary $\Gamma(t)$

(i)
$$w(s,t) \in \Gamma(t)$$
 for all $(s,t) \in \partial \mathbb{U} \times I$,

(ii) $w(\cdot, t) : \partial \mathbb{U} \to \Gamma(t)$ is a \mathcal{C}^2 -diffeomorphism for each fixed $t \in I$,

(iii) $w(\cdot, \cdot) \in \mathcal{C}^2\left(\partial \mathbb{U} \times I; \mathbb{R}^2\right)$.

It follows from the relations (4)–(7) that for each fixed appropriate t the unknown pressure p coincides up to constant factor with Green's function of the operator $-\Delta$ in the doubly connected domain $D_1(t)$ with the homogeneous Neumann data on the fixed boundary ∂F and the homogeneous Dirichlet data on the free boundary $\Gamma(t)$.

$$p = Q \cdot \mathcal{G}_{D_1(t)},\tag{11}$$

and $\mathcal{G}_{D_1(t)}$ is the solution of the following mixed boundary value problem

$$\Delta \mathcal{G}_{D_1(t)}(z, z_0) + \delta_0(z - z_0) = 0, \quad z \in D_1(t), \tag{12}$$

$$\mathcal{G}_{D_1(t)}(z, z_0) = 0, \quad z \in \Gamma(t),$$
 (13)

$$\frac{\partial \mathcal{G}_{D_1(t)}}{\partial n}(z, z_0) = 0, \quad z \in \partial F.$$
(14)

Real-variable formulation in terms of diffeomorphisms. **Problem (HS₀).** Find a pair $\{w(s,t); \mathcal{G}(z,z_0;t)\}$, such that w(s,t): $\partial \mathbb{U} \times I \to \mathbb{R}^2$ is a C^2 -diffeomorphism satisfying

(i) $w(s,t) \in \Gamma(t)$ for all $(s,t) \in \partial \mathbb{U} \times I$;

(ii) $w(\cdot, t) : \partial \mathbb{U} \to \Gamma(t)$ is a C^2 -diffeomorphism for each fixed $t \in I$;

(iii) $w^{(0)}(s) = w(s,0)$ is a given C^2 -diffeomorphism of the unit circle $\partial \mathbb{U}$, which describes the boundary $\Gamma(0)$ of initial domain $D_1(0)$;

(iv) $\mathcal{G}(z, z_0; t)$ is Green's function of the operator $-\Delta$ in the doubly connected domain $D_1(t)$ with the homogeneous Neumann data on the fixed boundary ∂F and the homogeneous Dirichlet data on the free boundary $\Gamma(t)$;

(v)
$$\partial_t w(s,t) = -\frac{Qh^2}{12\mu} \cdot \nabla \mathcal{G}(w(s,t),z_0;t)$$
 for all $(s,t) \in \partial \mathbb{U} \times I$.

Mazya-Movchan asymptotic results.

Let $\Omega \subset \mathbb{R}^2$ be a bounded open plane domain with compact closure $cl \Omega$ and a smooth boundary $\partial \Omega$. Let ω be a bounded domain in \mathbb{R}^2 with compact closure $cl \omega$ and smooth boundary $\partial \omega$. Let the origin O belongs to the intersection of Ω and ω , i.e. $O \in \Omega \cap \omega$. $\omega_{\varepsilon} = \{z \in \mathbb{R}^2 : \varepsilon^{-1} (z - O) \in \omega\}$, where ε is a small positive parameter, such that $\omega_{\varepsilon} \subset \Omega$. Let Ω_{ε} be an open doubly connected domain $\Omega_{\varepsilon} = \Omega \setminus cl \omega_{\varepsilon}$. Denote by $\mathcal{G}_{\varepsilon}$ Green's function of the operator $-\Delta$ with the Dirichlet

data on $\partial \Omega$ and the Neumann data on ω_{ε} , namely

$$\Delta_z \mathcal{G}_{\varepsilon}(z,\zeta) + \delta(z-\zeta) = 0, \quad z,\zeta \in \Omega_{\varepsilon}, \tag{15}$$

$$\mathcal{G}_{\varepsilon}(z,\zeta) = 0, \quad z \in \partial \Omega, \zeta \in \Omega_{\varepsilon},$$
 (16)

$$\frac{\partial \mathcal{G}_{\varepsilon}}{\partial n_{z}}(z,\zeta) = 0, \quad z \in \partial \omega_{\varepsilon}, \zeta \in \Omega_{\varepsilon}.$$
(17)

Let ${\mathcal G}$ be Green's function of the Dirichlet problem for operator $-\bigtriangleup$ in Ω

$$\mathcal{G}(z,\zeta) = \frac{1}{2\pi} \log \frac{1}{|z-\zeta|} - \mathcal{H}(z,\zeta), \qquad (18)$$

where ${\cal H}$ is a unique solution to the following problem

$$\Delta_z \mathcal{H}(z,\zeta) = 0, \quad z,\zeta \in \Omega, \tag{19}$$

$$\mathcal{H}(z,\zeta) = \frac{1}{2\pi} \log \frac{1}{|z-\zeta|}, \quad z \in \partial \Omega, \zeta \in \Omega.$$
 (20)

Introduce auxiliary variables (scaled coordinate) $\xi = \frac{1}{\varepsilon}z, \eta = \frac{1}{\varepsilon}\zeta$.

Define the Neumann function \mathcal{N} of the exterior Neumann problem for operator $-\Delta$ in the domain $\mathbb{R}^2 \setminus \omega$

$$\mathcal{N}(\xi,\eta) = \frac{1}{2\pi} \log \frac{1}{|\xi-\eta|} - h_N(\xi,\eta),$$
(21)

where h_N is a unique solution to the following problem (regular part of the Neumann function)

$$\Delta_{\xi} h_N(\xi,\eta) = 0, \quad \xi, \eta \in \mathbb{R}^2 \setminus cl \,\omega, \tag{22}$$

$$\frac{\partial h_N}{\partial n_{\xi}}(\xi,\eta) = \frac{1}{2\pi} \frac{\partial}{\partial n_{\xi}} \log \frac{1}{|\xi-\eta|}, \quad \xi \in \partial \,\omega, \eta \in \mathbb{R}^2 \setminus cl \,\omega,$$
(23)

$$h_N(\xi,\eta) \to 0, \quad \text{as } |\xi| \to \infty, \quad \eta \in \mathbb{R}^2 \setminus cl \,\omega.$$
 (24)

Introduce the vector dipole fields $\mathcal{D}(\xi) = (\mathcal{D}_1(\xi), \mathcal{D}_2(\xi))^T$:

$$\Delta \mathcal{D}(\xi) = 0, \quad \xi \in \mathbb{R}^2 \setminus cl \,\omega, \tag{25}$$

$$\frac{\partial \mathcal{D}_j}{\partial n}(\xi) = n_j, \quad \xi \in \partial \,\omega, \ j = 1, 2,$$
(26)

$$\mathcal{D}_j(\xi) \to 0, \quad \text{as } |\xi| \to \infty, \quad j = 1, 2,$$
(27)

where n_1, n_2 are components of the inward unit normal vector to $\partial \omega$. The dipole fields \mathcal{D}_j , j = 1, 2, satisfy the asymptotic representation for sufficiently large $|\xi|$

$$\mathcal{D}_{j}(\xi) = \frac{1}{2\pi} \sum_{k=1}^{2} \frac{\mathcal{P}_{jk}\xi_{k}}{|\xi|^{2}} + O(|\xi|^{-2}), \qquad (28)$$

where

$$\mathcal{P}_{jk} = -\delta_{jk} \cdot meas\left(\omega\right) - \int_{\mathbb{R}^2 \setminus \omega} \nabla \mathcal{D}_j(\xi) \cdot \nabla \mathcal{D}_k(\xi) d\xi.$$
(29)

(Mazya-Movchan, 2009) Green's function $\mathcal{G}_{\varepsilon}$ for the boundary value problem (15)–(17) with the Dirichlet data on $\partial \Omega$ and the Neumann data on $\partial \omega_{\varepsilon}$ has the asymptotic representation

$$\mathcal{G}_{\varepsilon}(z,\zeta) = \mathcal{G}(z,\zeta) + \mathcal{G}_{\varepsilon}^{*}(z,\zeta) + r_{\varepsilon}(z,\zeta), \qquad (30)$$

where \mathcal{G} is Green's function of the Dirichlet problem for Laplace equation in the domain Ω , the principal part $\mathcal{G}_{\varepsilon}^*$ of the asymptotic representation is defined in terms of Neumann function \mathcal{N} , regular part \mathcal{H} of Green's function \mathcal{G} and the dipole field \mathcal{D}

$$\mathcal{G}_{\varepsilon}^{*}(z,\zeta) = \mathcal{N}\left(\frac{z}{\varepsilon},\frac{\zeta}{\varepsilon}\right) + \frac{1}{2\pi}\log\left(\frac{|z-\zeta|}{\varepsilon}\right) + \varepsilon \mathcal{D}\left(\frac{z}{\varepsilon}\right) \cdot \nabla_{z} \mathcal{H}(0,\zeta) + \varepsilon \mathcal{D}\left(\frac{\zeta}{\varepsilon}\right) \cdot \nabla_{\zeta} \mathcal{H}(z,0),$$
(31)

and the remainder satisfies the following uniform inequality

$$|r_{\varepsilon}(z,\zeta)| \le const \cdot \varepsilon^2.$$
(32)

Corollaries:

1. (Mazya-Movchan, 2009) Let min $\{|z|, |\zeta|\} > 2\varepsilon$. Then the following asymptotic formula holds:

$$\mathcal{G}_{\varepsilon}(z,\zeta) = \mathcal{G}(z,\zeta) - \frac{\varepsilon^2}{4\pi^2} \frac{z^T}{|z|^2} \mathcal{P} \frac{\zeta}{|\zeta|^2} +$$

$$+ \frac{\varepsilon^2}{2\pi} \left\{ \frac{z^T}{|z|^2} \mathcal{P} \nabla_z \mathcal{H}(0,\zeta) + \frac{\zeta^T}{|\zeta|^2} \mathcal{P} \nabla_\zeta \mathcal{H}(z,0) \right\} +$$

$$+ \varepsilon^2 O\left(\frac{1}{|z|^2} + \frac{1}{|\zeta|^2} \right),$$
(33)

where \mathcal{H} is the regular part of Green's function \mathcal{G} in the domain Ω defined by (19)-(20), and \mathcal{P} is the dipole matrix for ω defined in (29). 2. (Mazya-Movchan, 2009) For all $z, \zeta \in \Omega_{\varepsilon}$ asymptotic formula (30) can be presented in the following form:

$$\mathcal{G}_{\varepsilon}(z,\zeta) = \frac{1}{2\pi} \log \frac{1}{|z-\zeta|} - h_N \left(\frac{1}{\varepsilon}z, \frac{1}{\varepsilon}\zeta\right) - \mathcal{H}(0,0) - \qquad (34)$$
$$- \left(z - \varepsilon \mathcal{D}\left(\frac{1}{\varepsilon}z\right)\right) \cdot \nabla_z \mathcal{H}(0,\zeta) - \left(\zeta - \varepsilon \mathcal{D}\left(\frac{1}{\varepsilon}\zeta\right)\right) \cdot \nabla_\zeta \mathcal{H}(z,0) + O\left(\varepsilon^2 + |z|^2 + |\zeta|^2\right).$$

Representation of the solution.

$$F = \omega_{\varepsilon}, \quad D(t) = \Omega. \tag{35}$$

Thus

$$\mathcal{G}(z, z_0; t) = \mathcal{G}_{\varepsilon}(z, z_0). \tag{36}$$

This function have to satisfy the following relations:

$$\partial_t w(s,t) = -\frac{Qh^2}{12\mu} \cdot \nabla_z \mathcal{G}_{\varepsilon}(w(s,t),z_0) \quad \text{for all} \quad (s,t) \in \partial \mathbb{U} \times I, \tag{37}$$

$$w(s,0) = w^{(0)}(s), \quad s \in \partial \mathbb{U}, \tag{38}$$

where $w^{(0)}(s) \in \mathcal{C}^2(\partial \mathbb{U})$ is a given function.

We consider four essentially different situations:

(a) the source z_0 and ALL points z = w(s,t) of the boundary $\partial \Gamma(0)$ of the initial domain $D_1(0)$ are distant from the boundary $\partial \omega_{\varepsilon}$ of the obstacle;

(b) the source z_0 is close to the boundary $\partial \omega_{\varepsilon}$ of the obstacle, but ALL points z = w(s,t) of $\partial \Gamma(0)$ are distant from $\partial \omega_{\varepsilon}$;

(c) the source z_0 and SOME points z = w(s,t) of $\partial \Gamma(0)$ are close to the boundary $\partial \omega_{\varepsilon}$ of the obstacle; we consider those points z = w(s,t)which are distant from $\partial \omega_{\varepsilon}$;

(d) the source z_0 and SOME points z = w(s,t) of $\partial \Gamma(0)$ are close to the boundary $\partial \omega_{\varepsilon}$ of the obstacle; we consider those points z = w(s,t)which are close to $\partial \omega_{\varepsilon}$.