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Hydraulic Fracturing

PART   I
STATE OF ART
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Hydraulic Fracturing
What is it?

Hydraulic fracturing is the operation 
extensively used in the petroleum industry 

to stimulate oil and gas recovery

Thousands of treatments are successfully pumped each year

Water under high pressure 
is pumped between packers 

to create a crack (hydrofracture) 
in a productive layer

L ≈ 70 m
Hydrofracture

Borehole

Packer

Packer

Rock

Rock
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Essence 
of Hydraulic Fracturing

Drastic increase of the surface,
to which oil (gas, heat) flows

ESSENCE 

L >> dd ≈ 0.2m

Well

L >> dd ≈ 0.2m

Well

L >> dd ≈ 0.2m

Well

L >> dd ≈ 0.2m

Well

L ≈ 70 m

Hydrofracture

Well

L ≈ 70 m

Well

L ≈ 70 m

Hydrofracture

Well

L ≈ 70 m

Well

0.2m
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Growing Importance 
of Hydraulic Fracturing

Hydrofracture

WellWell Rock

Rock

The importance of hydraulic fracturing 
has dramatically grown last years 
because huge resources of gas 

are found in low permeable shales

The key element of technology, used in shales, is hydraulic fracturing
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Hydraulic Fracturing
Other Applications 

� Increase heat production from geothermal reservoirs  
� Measure in-situ stresses 
� Control caving of roof in coal and ore excavations
� Enhance CO2 sequestration
� Isolate toxic substances in rock

Hydraulic fractures are also used to

In natural conditions,pressurized melted substance fractures 
earth crust leading to formation of veins of mineral deposits

Hydrofracture

WellWell Rock

Rock
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To efficiently employ hydraulic fracturing, 
we need to properly model it 

accounting for the most essential features listed 

Strongly 
inhomogeneous rock 

Fracture contour

Fluid front

Proppant 

Lag between fracture and 
fluid front 

Hydrofracture

WellWell

Seismic events, induced 
by fracture    

Scheme Explaining Problems 
of Modeling Hydraulic Fractures



88

First Theoretical Models

PKN model: 
plane-strain state invertical cross sections
Perkins & Kern 1961
Nordgren 1972

FractureWell

)(tx∗∗∗∗

x

y

O
w(x,t)

h

KGD model: 
plane-strain state in horizontal cross-sections
Khristianovich & Zheltov 1955 
Geertsma & de Klerk 1969

x
p

σn

σn
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Further Theoretical Work
Studying of asymptotics and self-similar solutions

Spence & Sharp 1985: self-similar plane problem and asymptotics 
for newtonian liquid; 
Desrouches, Detournay et al 1994: asymptotics for power-law 
liquid; 
Adachi & Detournay 2002: self-similar plane problem for power-
law liquid; 
Savitski & Detournay 2002: self-similar axisymmetric problem for 
Newtonian liquid; 
Michell, Kuske & Pierce 2007: asymptotics and regimes 

Hu & Garagash 2010: plane problem; accounting for leak-off

Numerous papers on theoretical studying of hydraulic 
fracturing are focused on 

(i) asymptotics at crack tip; 
(ii) self-similar and asymptotic solutions to study regimes of flow
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Conventional Formulation 
Equations for fluid

EMPHASIZE THAT
the conventional formulation employs the 

flux q
rather than the 

fluid particle velocity, 
despite the particle velocityis the primary quantity used 

when deriving the Poiseuille equation

qn = q0

S(t)
Lq

Lp p = p0
Poiseuille equation

ppwD grad),(−−−−====q

Continuity equation
0/ ====−−−−∂∂∂∂∂∂∂∂++++ eqtwdivq

0/]grad),([ ====++++∂∂∂∂∂∂∂∂−−−− eqtwppwDdiv
Reynolds equation (using (2) in (1) )

(1)

(2)

(3)
Initial condition (zero opening) 0)0,( ====xw

BC from physical considerations (at the fluid contour)
)()( 0 xx qq n ==== qL∈∈∈∈x )()( 0 xx pp ==== pL∈∈∈∈x (5)

(4)
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Equations for Solid

x
p

σn

σn

O
)(tx∗∗∗∗

)(txC

Solid mechanics equation
(commonly BIE of linear elasticity)

0),( ====pwA

Strength limitation permits crack propagation.
In general, it also defines the lag 

between the fluid front and the crack tip

The opening w being unknown, we need a solid mechanics 
equation for embedding solid (rock)

Boundary condition(at crack contour) 0)( ====cxw

Fracture mechanics strength equations
(commonly in terms of SIFs)

cII KK ====
0====IIK
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Simulators of Hydraulic Fractures

Planar fracture geometry 
based on rectangular 
boundary elements 

Interpolated
frontSource

elements 

∆x

∆y

Simulators
USA: Schlumberger (Siebrits et al;  
Cipola et al.), Pinnacle (Warpinski)
USA: (Cleary et al)
Japan: (Jamamoto et al.)  

}? Black 
boxes

Inexplicitly, numerics built in Schlumberger codes is sketched in:
Adachi, Siebrits et al, Int. J. Rock Mech Min. Sci., 2007, 44, 739-757

The authors emphasized the need 
“to dramatically speed up … simulators”
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Means to Meet Challenge

“To dramatically speed up simulators”
it looks reasonable to employ methods of the 

THEORY OF PROPAGATING INTERFACES
J. A. Sethian, Level Set Methods and Fast Marching Methods,

Cambridge, Cambridge Univ. Press, 2nd ed., 1999

The basic concept of the theory is
SPEED FUNCTION

BUT! For more than 40 years, it has not been employed
for hydraulic fracture simulation

“WHY NOT?”
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Hydraulic Fracturing

PART   II

ANSWER TO THE QUESTION
“WHY NOT?”

AND
NEW RESULTS
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Why Not?
Fluid Flux vs. Particle Velocity

BUT !   
As mentioned, the conventional formulation employs 
the fluid flux rather than the fluid particle velocity. 

Meanwhile, the particle velocityis the primary quantity 
used when deriving the continuity and Poiseuille equations 

The SPEED FUNCTION is the 
VELOCITY Vn* of the fracture front. 

Hence we need a velocity.

This indicates that it is reasonable to revisit basics

qn = q0

S(t)Lq

Lp p = p0
Vn*
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Reynolds Transport Theorem 
and Speed Equation

Hydrofracture is
a narrow channel

Sm
ρ*w* vn*

w
ρ*w* vn*

Note that the flux appears only after setting by definition q =ρwv

Reynolds transport theorem for flow in a narrow channel:

∫∫∫∫ ∫∫∫∫++++
∂∂∂∂

∂∂∂∂====
)( )(

)(

tS tL
n

e

m

dSwvdV
t

w

dt

dM ρρ
k

k
e x

wv

t

w
m

∂∂∂∂
∂∂∂∂

++++
∂∂∂∂

∂∂∂∂====
)()( ρρ

& continuity eqn 

is the neededSpeed Equation (SE)
**

*
*

*
* w

q
v

dt

dx
V n

n
n

n ρ
============

is the needed Speed Function (SF)
**

*
* w

q
vF n

n ρ
========

For the entire volume, occupied by a fluid, the integral form reads:

∫∫∫∫ ∫∫∫∫++++
∂∂∂∂

∂∂∂∂====
tS tL

n
e dSvwdV

t

w

dt

dM

)(
***

*

)( ρρ

By derivation, the particle velocity on the front 
equals the speed of propagation. Therefore:

Reynolds transport theorem for flow in a narrow channel:

∫∫∫∫ ∫∫∫∫++++
∂∂∂∂

∂∂∂∂====
)( )(

)(

tS tL
n

e

m

dSwvdV
t

w

dt

dM ρρ
k

k
e x

wv

t

w
m

∂∂∂∂
∂∂∂∂

++++
∂∂∂∂

∂∂∂∂====
)()( ρρ

& continuity eqn 

is the neededSpeed Equation (SE)
**

*
*

*
* w

q
v

dt

dx
V n

n
n

n ρ
============
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Particular Feature 
of Conventional Formulation

Thus for the elliptic (in spatial coordinates)operator
we havetwo rather than oneboundary conditions 

involving a function and its normal derivative 
This indicates that there might be difficulties 

Specifically, for a fixed front, the problem appears  ill-posed

qn = q0

S(t)
Lq

Lp p = p0

But !We have additional SPEED EQUATION (at the fluid contour)

Initial condition (zero opening) 0)0,( ====xw

BC from physical considerations (at the liquid contour)
)()( 0 xx qq n ==== qL∈∈∈∈x )()( 0 xx pp ==== pL∈∈∈∈x

Poiseuille equation
ppwD grad),(−−−−====q

Continuity equation (local form)
0/ ====−−−−∂∂∂∂∂∂∂∂++++ eqtwdivq

0/]grad),([ ====++++∂∂∂∂∂∂∂∂−−−− eqtwppwDdiv
Reynolds equation (using (2) in (1) )

(1)

(2)

∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗

∗∗∗∗
∂∂∂∂−−−−========

dn

p
pwD

ww

q
vn ),(

1
BC=SE ! pq LLx ++++∈∈∈∈

(3)
(4)

(5)

(6)
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Hadamard Definition and 
Tychonoff Regularization

We need a proper method of regularization 
for the problem of hydraulic fracturing

We need a proper method of regularization 
for the problem of hydraulic fracturing

We need a proper method of regularization 
for the problem of hydraulic fracturing

By Hadamard, a problem is well-posedwhen
� A solution exists 
� The solution is unique 
� The solution depends continuously on the data, in a reasonable metric

Otherwise, a problem is ill-posed

A.N. Tychonoff (1963) Solution of incorrectly formulated problems 
and the regularization method, Soviet Mathematics 4, 1035-1038. 
[Transl. from Russian: А. Н. Тихонов, ДАН СССР, 1963, 151, 501-504]

A.N. Tychonoff (1943) clearly recognized significance of ill-posed 
problems for applications. He was the first to suggest a means 
to solve them numerically by using regularization:

Hadamard considered that ill-posed problems had no physical sense
Otherwise, a problem is ill-posed

Jacques Hadamard (1902), Sur les problemes aux derivees partielles et leur 
signification physique, Princeton Univ. Bul. 49-52

Hadamard considered that ill-posed problems had no physical sense

We need a proper method of regularization 
for the problem of hydraulic fracturing
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Clear Evidence that BVP is Ill-Posed: 
Nordgren Problem

BC at liquid front x = x*

BC at inlet x = 00
0

4
q====

∂∂∂∂
∂∂∂∂−−−−

====x
x

w

0),( ====∗∗∗∗ tw x

Initial condition: w(x,t0)=w0(x)

Boundary conditions:

Speed Equation:+

In dimensionless variables, the problem becomes

FractureWell

)(tx∗∗∗∗

x

y

O
w(x,t

)

h

Nordgren’s PDE0
2

42
====

∂∂∂∂
∂∂∂∂−−−−

∂∂∂∂

∂∂∂∂
t

w

x

w

Reynolds equation (Newtonian liquid) 
03 ====

∂∂∂∂
∂∂∂∂−−−−









∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

t

w

x

p
w

x
kl

Elasticity equation for plane-strain 
in vertical cross-sections wkp r====

)(

3
*

* *3

4
txxx

w

dt

dx
V ====∂∂∂∂

∂∂∂∂−−−−========

There are threerather than twoBC for the PDE of secondorder
in spatial variable x. For any fixed x*, the problem is ill-posed
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Even More Clear Evidence 

that BVP is Ill-Posed

)()( 3 ξψξ ====yDenote The problem is reduced to ODE

ODE0
20

3
),/,(

2

2
====−−−−

∂∂∂∂
++++

ξ
ξξ

ξ
dy

ddyya
d

yd

where a(y,dy/dξ,ξ)=(dy/dξ+0.6ξ)/(3y) is finite at fluid front ξ=ξ*

(1)

Thus, there are two, rather than one,BC at the fluid front. By Picard, theorem, 
the Cauchy conditions (3), (4)uniquely define y(ξ), dy/dξ and consequently influx 
at the inlet. Hence, a solution of BVP (1)-(3) does not exist for an arbitrary influx .

By Hadamard definition, the BV problem (1)-(3) is ill-posed

FractureWell

)(tx∗∗∗∗

x
O

w

The Nordgren problem is self-similar. 
Introduce self-similar variables

)()(    , 5/45/15/4 −−−−======== xttxwtx ψξ 5/4tx ∗∗∗∗∗∗∗∗ ==== ξ

+ SPEED EQUATION,which is met identically by a solution of ODE 
satisfying BC (3):  ∗∗∗∗

∗∗∗∗====
−−−−====

∂∂∂∂
ξ

ξ ξξ
6.0

dy
SE at fluid front ξ = ξ* (4)

BC at fluid front ξ = ξ*

BC at inlet ξ= 03
0

0 )0(
75.0

y

qdy −−−−====
∂∂∂∂ ====ξξ

0)( ====∗∗∗∗ξy

(2)

(3)

Boundary conditions for the ODE of secondorder: 
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Solution of Nordgren Problem
without regularization

FractureWell

)( tx ∗∗∗∗

x

y
O

w(x,t)
h

We solved both the starting and self-similar BV Nordgren problem 
by finite differences 

without regularization

By no means could we have more than two correct digits

�Using fine meshes(with the step less than 10-5x*) led to 
complete deteriorationof the solutionin the entire region

�The results always deterioratednear the front
Furthermore,

This clearly shows that a proper regularization method 
is needed to have accurate and reliable numerical results
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Regularization Method 
for Hydraulic Fracturing 

We suggest the regularization method employing the very cause of the difficulty

The regularization method consists in using the BC (5) at a small
distance ε behind the front rather than the BC (2) and (3) on the front

PDF
with two BC at a point x* of the liquid front

( ) 0grad),(div =−−
∂
∂

et
w qppwD (1)

(4)

(2)

(3)

)()( *0* xx pp =

(5)

Integration of (3) and accounting for (2) yield
∗∗∗∗====

∂∂∂∂
∂∂∂∂−−−−

====
nv

n

p
pwD

w
*xx*x

),(
)(

1

*

Prescribed for a problem

Speed Equation

We have:

By using (4) we impose the BC at a small distance ε behind the front:

ε
ε

*
0

),(
1

vdppwD
w

p

p
====∫∫∫∫

We call this approach ε - regularization
It appears really efficient for solving HF problems

Hydraulic fracture

Front

x1
s

n

x2

r x*

O

O’
ε

rvdppwD
w

p

p
*

0

),(
1 ≈≈≈≈∫∫∫∫
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Solution of Nordgren Problem
with ε – regularization

1 ζ0

1 ζ0 ζε

ε

We have obtained that near the front:
)1)(()(75.0),( ςς −−−−≈≈≈≈ ∗∗∗∗∗∗∗∗ tvtxtY

Hence, we may impose the BC 
at the relative distanceε behind the front

εςε )()(75.0),( tvtxtY ∗∗∗∗∗∗∗∗====
We solved both the starting and self-similar BV Nordgren problem 

by finite differences with ε -regularization

This shows that ε - regularization is efficient

For ODE of self-similar formulation, there are six correct digits, at least;
For PDE, the error is less than 0.03% even for 100 000 steps

� The results are accurate in a wide range of ε (10-2 > ε >10-5), size (10-2 >
∆ζ >10-5) and number (up to 100 000) of time steps

Even for 100 000 steps, the time expense does not exceed 15 s

� There are no signs of instabilityin specially designed experiments

Conclusions obtained:

There are also other important implications of the SE 
concerning with a proper choice of variables

� Small time expenseon a conventional laptop
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Importance of Particle Velocity

Speed Equation (SE)
*

*
** w

q
vV n
nn ========

� It defines the speed of the front propagation, 
� It is the primary quantity defining the flux q = ρwv,
� It also defines the movement of proppant, used to prevent 

the fracture closure,
� It is non-zero and finite function in the entire flow region, what 

makes it a proper choice as a convenient mathematical quantity 

v* is the value of particle velocity vat the fluid front

V*=v* =vn* w*

v

V*=v* =vn*

Thus, it looks reasonable to reformulate the HF problem 
by including the particle velocity into equations

We see that, although the particle velocity
does not enter the conventional formulation,
it is of physical and mathematical significance:
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Proper Choice of Variables

Hydraulic fracture

Front

x1
s

n

x2

r x*

O

O’
ε

instead ofpressure p(i) Particle velocity ppwD
w

v grad),(
1====

(ii) Local coordinates r, s moving with the front instead 
of the fixed system x1x2

We have already noticed that the SEand regularization method suggest using:

Besides, the SE, taken together with an elasticity eqn, implies that commonly 
the opening has power asymptotics w = C(t)rα, with 0 < α < 1. 
Hence its derivative is singularnear the front: dw/dr→∞, when r → 0. 

(iii) Modified opening y = w1/α instead of opening w
Thus, it is reasonable to use:

In new variables, we obtain the modified lubrication equation:

ln
n q

y

r

y
Vv

r

vy

t

y

αα

α−−−−
−−−−

∂∂∂∂
∂∂∂∂−−−−++++

∂∂∂∂
∂∂∂∂

====
∂∂∂∂
∂∂∂∂ 1

*)(

Emphasize that the new variables v and y have ‘good’ properties:

Thus we have obtained the modified formulationof the HF problem
� Modified opening is linear near the front
� Particle velocity isnon-zero finite smoothfunction up to the front
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Modified Formulation

� The particle velocity, as a variable smooth near the front, 
instead of the pressure; 

� The modified opening, which is linear near the front, 

instead of the opening itself;

� The SE at each point of the front, 

instead of the single equation of global mass balance;

� ε-regularization to exclude solution deterioration caused by the fact that 
the problem is ill-posed for a fixed position of the front; 

� Moving spatial coordinates;

� Reformulationof the common system of equations and BCin terms of 
the suggested variables complimented, when appropriate, with ε-
regularization. 

Summarizing, we come to the modified formulationof HF problem. 
In contrast with the conventional formulation, it uses: 
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Computational Advantages of 
Modified Formulation

� Possibility to use well-established methods of the theory 
of propagating interfaces;

� Avoiding deterioration of numerical solution;
� Avoiding singularities at the fluid front.

Computational advantageshave been explained and illustrated 
by revisiting the classical Nordgren problem. 

The main advantages are:
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Analytical Advantages 
of Modified Formulation

Analytical  advantagesare evident when revisiting the classical problems

KGD model: plane-strain state in horizontal cross-section

x
p

σn

σn

For both problems, themodified formulation provides simple analytical solutions

PKN model: plane-strain state in vertical cross section

Fracture
Well

)( tx ∗∗∗∗

x

y

w(x,t)
h

See: Linkov, IJES, 2012, 52, 77-88

Theconventional formulation requiresinvolved calculations
See: Nordgren, Soc. Pet. Eng., 1972, August, 306-314

See: Spence & Sharp, Proc. Roy. Soc. London, A, 1985, 400, 289-313;
Adachi & Detournay, Int. J. Numer. Anal. Meth. Geomech., 2002, 26, 579-604

Again, theconventional formulation requiresinvolved calculations
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Further Work

29

� Development of new efficient algorithms for simulation of HF;

� Improving commercial codes serving for modeling HF;

� Obtaining analytical solutions accounting for leak-off and non-Newtonian 
behavior of fracturing fluids;

� Proper accounting for the lag between the fluid front and the crack contour;

� Proper modeling of proppant movement 

Further work may employ new options provided by the 
modified formulation. They include:

The work is in progress. 
Hopefully, the joined efforts 

of English, Polish and Russian colleagues
will provide useful results in the areas listed
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Thank you!

30


