Speed Equation and its Application for Solving III-Posed Problems of Hydraulic Fracturing

A. M. Linkov
Presented by Academician N. F. Morozov March 17, 2011

Received March , 2011
Mathematical modeling of a fluid driven fracture, first discussed in [1], is of prime significance for hydraulic fracturing. Models developed to date employ the integral form of global mass balance (e.g. [2-5]). We demonstrate that using the local form, called the speed equation, shows specific features of the problem: it is ill-posed when considered as a boundary value (BV) problem. The equation also provides a means to regularize the problem and solve it efficiently.

Initially, we show that the speed equation is fundamental in the sense that it does not depend on a particular shear law of a liquid. When applied to a narrow channel between closely located boundaries, the mass conservation equation for an incompressible liquid is

$$
\begin{equation*}
\frac{d V e}{d t}=\int_{S_{l}} \frac{\partial w}{\partial t} d S+\int_{L_{l}(t)} w_{*}\left(\boldsymbol{x}_{*}\right) v_{n *}\left(\boldsymbol{x}_{*}\right) d L \tag{1}
\end{equation*}
$$

where S_{l} is the middle surface, w is the height (opening) of the channel, $L_{l}(t)$ is the contour of the liquid front at the time t, x_{*} is a point on the front, $v_{n *}$ is the normal to L_{l} component of the
fluid particle velocity averaged across the height. Note that in (1), the average particle velocity $v_{n *}$ also represents the speed of the front propagation. As $q_{n^{*}}\left(x_{*}\right)=w_{*}\left(x_{*}\right) v_{n *}\left(x_{*}\right)$ is the flux through the front cross-section, we obtain the fundamental equation which gives the front velocity as a function of the flux and opening:

$$
\begin{equation*}
v_{n *}\left(\boldsymbol{x}_{*}\right)=\frac{q_{n}\left(\boldsymbol{x}_{*}\right)}{w_{*}\left(\boldsymbol{x}_{*}\right)} . \tag{2}
\end{equation*}
$$

Use the Reynolds equation for flow of viscous incompressible liquid in a narrow channel:

$$
\begin{equation*}
\frac{\partial w}{\partial t}-\frac{\partial}{\partial x_{i}}\left(D(w, p) \frac{\partial p}{\partial x_{i}}\right)-q_{e}=0 \tag{3}
\end{equation*}
$$

where D is a prescribed function or operator; p is the pressure, averaged through the cross-section; $v_{i}(i=1,2)$ are components of the average velocity of liquid particles in a channel cross section; the Cartesian coordinates x_{1}, x_{2} are located in the fracture plane. Non opening fracture along a crack trajectory is assumed as an initial condition when studying hydraulic fracture. The boundary condition on the liquid front is the condition of the prescribed flux q_{0} at a part L_{q} and of the prescribed pressure p_{0} at the remaining part L_{p} of the contour L_{l} :

$$
\begin{equation*}
q_{n}(\boldsymbol{x})=q_{0}(\boldsymbol{x}) \quad \boldsymbol{x} \in L_{q} ; \quad p(\boldsymbol{x})=p_{0}(\boldsymbol{x}) \quad \boldsymbol{x} \in L_{p} \tag{4}
\end{equation*}
$$

The opening in (3) being unknown, we need elasticity equation connecting the opening w and pressure p. Additionally, the criterion of linear fracture mechanics is imposed: $K_{I}=K_{I C}$, where K_{I} is the stress intensity factor, $K_{I C}$ is its critical value.

In view of (2), prescribing the boundary conditions (4) means that there are two conditions at the points of a liquid front. This leads to difficulties common to over-determined problems [7-9] when solving the problem numerically, because the boundary is fixed on iteration. To find a means to overcome the difficulties, we study the Nordgren problem [2]. The Nordgren model considers straight fracture along the x-axis (Fig.) with the assumption that the pressure p is proportional to the opening w. Neglecting liquid leak-off and normalizing the variables, the equation (3) reads [2]:

$$
\begin{equation*}
\frac{\partial^{2} w^{4}}{\partial x^{2}}-\frac{\partial w}{\partial t}=0 \tag{5}
\end{equation*}
$$

The boundary conditions include the prescribed normalized flux q_{0} at the inlet $x=0$:

$$
\begin{equation*}
\frac{\partial w^{4}}{\partial x}=-q_{0} \tag{6}
\end{equation*}
$$

and zero opening (and flux) at the liquid front $x=x_{*}$, which coincides with the crack tip:

$$
\begin{equation*}
w\left(x_{*}\right)=0 . \tag{7}
\end{equation*}
$$

The opening is assumed positive for $0 \leq x<x_{*}$. We shall also use the speed equation (2) which becomes:

$$
\begin{equation*}
v_{*}=-\left.\frac{4}{3} \frac{\partial w^{3}}{\partial x}\right|_{x=x_{*}} \tag{8}
\end{equation*}
$$

The problem being self-similar, the solution is represented as $w=t^{1 / 5} \psi(\xi)$, where $\xi=x t^{-4 / 5}$, so that $x=\xi t^{4 / 5}, x_{*}=\xi_{*} t^{4 / 5}$, $v_{*}=d x_{*} / d t=0.8 \xi_{*} t^{-1 / 5}, \xi_{*}$ is the automodel coordinate of the liquid front depending only on the prescribed flux q_{0}. Then the equation (5) becomes the ordinary differential equation:

$$
\begin{equation*}
\frac{d^{2} y}{d \xi^{2}}+a(y, d y / d \xi, \xi) \frac{d y}{\partial \xi}-\frac{3}{20}=0 \tag{9}
\end{equation*}
$$

where $\quad y(\xi)=\psi^{3}(\xi), \quad a(y, d y / d \xi, \xi)=(d y / d \xi+0.6 \xi) /(3 y)$. The boundary conditions (6) and (7) read:

$$
\begin{gather*}
\left.\frac{d y}{\partial \xi}\right|_{\xi=0}=-0.75 \frac{q_{0}}{\sqrt[3]{y(0)}}, \tag{10}\\
y\left(\xi_{*}\right)=0 \tag{11}
\end{gather*}
$$

and the speed equation (8) becomes:

$$
\begin{equation*}
\frac{d y}{\partial \xi_{\xi=\xi_{*}}}=-0.6 \xi_{*} \tag{12}
\end{equation*}
$$

It is easily shown that $C_{*}=\left(q_{0}\right)^{0.6} / \xi_{*}$ and $C_{0}=y(0) / \xi_{*}^{2}$ are constants independent of the flux q_{0}. Since $\xi_{*}=\left(q_{0}\right)^{0.6} / C_{*}$,
we may prescribe q_{0} or ξ_{*}, as convenient. A particular value of q_{0} or ξ_{*} may also be conveniently taken.

We can now fix ξ_{*}. Then according to (11), (12), at a fixed point ξ_{*}, we have prescribed both the function y and its derivative $d y / d \xi$. Thus, for the equation of the second order (9) we have a Cauchy problem. Its solution defines $y(0)$ and $d y / d \xi_{\xi=0}$ and consequently the flux q_{0} at $\xi=0$. A small error when prescribing q_{0} in (10) excludes the existence of the solution of the BV problem (9)-(11). By definition [7], the BV problem (9)-(11) is ill-posed and needs regularization [8, 9].

Conversely, the Cauchy problem (9), (11), (12) is well-posed and leads to a bench-mark solution. We obtained the solution by applying the fourth order Runge-Kutta scheme to the system of two differential equations in unknowns $y_{1}(\xi)=y(\xi)$, $y_{2}(\xi)=d y l \xi$, equivalent to (9). The constants C_{*} and C_{0} evaluated with seven significant digits are: $C_{*}=0.7570913$, $C_{0}=0.5820636$. For the value $q_{0}=2 / \pi$, used by Nordgren [2], we have $\xi_{*}=1.0073486, \psi(0)=0.8390285$ against the values $\xi_{*}=1.01, \psi(0)=0.83$ given by this author with the accuracy of about one percent. Bench-mark values of the function $y(\xi)$ and its derivative served us to evaluate the
accuracy of further calculations obtained by using various approaches.

We could see that when solving the BV problem (9)-(11) it is impossible to obtain more than two correct digits. What is notable, this level of accuracy was obtained even when using a rough mesh with only one-hundred nodes. This implies that using a rough mesh may serve to regularize the problem when high accuracy is not needed. For fine meshes, we could see strong deterioration of the results near the liquid front $\xi=\xi_{*}$.

Likewise, our attempts to accurately solve the problem (5)-(7) also failed when using time steps with finite difference approximations for $\partial^{2} w / \partial x^{2}$ and $\partial w / \partial x$ at a step. By no means could we have three correct digits, and the results always strongly deteriorated near the liquid front $x=x_{*}(t)$. Again, fine meshes did not improve the accuracy as compared with a rough mesh having the step $\Delta \varsigma=\Delta x / x_{*}=0.01$.

The experiments confirm that the ill-posed problem under consideration cannot be solved accurately without regularization. A regularization method is suggested by the conditions (11), (12). Indeed, they yield the approximate equation $y \approx 0.6 \xi_{*}\left(\xi_{*}-\xi\right)$ near the front. Hence, instead of prescribing a boundary condition at the front $\xi=\xi_{*}$, we impose it at a point $\xi_{\varepsilon}=\xi_{*}(1-\varepsilon)$ at a small relative distance ε from the front:

$$
\begin{equation*}
y\left(\xi_{\varepsilon}\right)=0.6 \xi_{*}^{2} \varepsilon \tag{13}
\end{equation*}
$$

The BV problem (9), (10), (13) is well-posed; it may be solved by finite differences. It appears that with $\varepsilon=10^{-3}, 10^{-4}$, the results for the steps $\Delta \varsigma=\Delta \xi / \xi_{*}=10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}$ coincided with those provided by the bench-mark solution. The results are stable if ε and $\Delta \zeta$ are not simultaneously too small $\left(\varepsilon, \Delta \varsigma>10^{-5}\right)$. However, as expected, the results deteriorate when both ε and $\Delta \varsigma$ are too small; they become absolutely wrong when $\varepsilon=\Delta \zeta=10^{-6}$. We could also see that as ε increases, the accuracy decreases and it actually does not depend on the step if the latter is small enough. In particular, for the step $\Delta \varsigma=0.1$, the accuracy is one percent for $\varepsilon=0.01$, and the results stay at the same accuracy level even for $\varepsilon=10^{-9}$.

The suggested regularization consists in using the speed equation together with a prescribed boundary condition to formulate the boundary condition at a small relative distance ε behind the front rather than on the front itself. We call such an approach ε-regularization. It is applicable in general 1 D and 2 D cases when a self-similar formulation is not available or is not used. To illustrate, we employed the ε - regularization for the starting equation (5) under the boundary conditions (6), (7). In terms of the variable $Y=w^{3}$, the prescribed condition (7) and the
speed equation (8) yield $Y(x, t) \approx 0.75 x_{*}(t) v_{*}(t)\left[1-x / x_{*}(t)\right]$ at points close to the front. Hence, the boundary condition at a point $x_{\varepsilon}=x_{*}(1-\varepsilon)$ with the relative distance ε from the front is:

$$
\begin{equation*}
Y\left(x_{\varepsilon}, t\right)=0.75 x_{*}(t) v_{*}(t) \varepsilon \tag{14}
\end{equation*}
$$

Thus, the regularized problem consists in solving (5) under zero-opening initial condition and the boundary conditions (6) and (14). Numerical experiments have shown that the ε regularization removes the difficulties and provides accurate results.

The conclusions of the paper are as follows: (i) the derived speed equation may serve for tracing hydraulic fracture by methods of the theory of propagating surfaces; (ii) when simulating hydraulic fracture numerically, it is useful to employ the ε - regularization consisting in prescribing a boundary condition at a small relative distance ε behind the front; (iii) the method provides an efficient means for solving problems of hydraulic fracture.

ACKNOWLEDGEMENTS

The author appreciates the support of the EU Marie Curie IAPP program (Grant \# 251475).

REFERENCES

1. Khristianovich S. A., Zheltov V. P., Proc. 4-th World Petroleum Congress, Rome, 1955, 579-586 .
2. Nordgren R. P., Soc. Petroleum Eng. J., 1972, 12(8), 306314.
3. Spence D. A., Sharp P. W., Proc. Roy Soc. London, Ser. A, 1985, 400, 289-313.
4. Adachi J., Siebrits E., et al., Int. J. Rock Mech. Mining Sci., 2007, 44, 739-757.
5. Hu J., Garagash D. I., J. Engineering Mech., ASCE, 2010, 136(9), 1152-1166.
6. Sethian J. A., Level Set Methods and Fast Marching Methods, Cambridge, Cambridge University Press, 1999, 370p.
7. Hadamard J., Princeton University Bulletin, 1902, 49-52.
8. Tychonoff A. N., Soviet Mathematics, 1963, 4, 1035-1038 [Translation from Russian: А. Н. Тихонов, Доклады АН CCCP, 1963, 151, 501-504].
9. Lavrent'ev M. M., Savel'ev L. Ja., Theory of Operators and Ill-Posed Problems (Novosibirsk, Institute of Mathematics im. S. L. Sobolev, 1999, 702p), ISBN 5-86134-077-3 [in Russian].

Figure subscription
Fig. Scheme of the problem on hydraulic fracture propagation

