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1 Mathematical modeling of a fluid driven fracture,
first discussed in [1], is of prime significance for
hydraulic fracturing. Models developed to date
employ the integral form of global mass balance (e.g.
[2–5]). We demonstrate that using the local form,
called the speed equation, shows specific features of
the problem: it is ill�posed when considered as a
boundary value (BV) problem. The equation also pro�
vides a means to regularize the problem and solve it
efficiently.

Initially, we show that the speed equation is funda�
mental in the sense that it does not depend on a partic�
ular shear law of a liquid. When applied to a narrow
channel between closely located boundaries, the mass
conservation equation for an incompressible liquid is

, (1)

where Sl is the middle surface, w is the height (open�
ing) of the channel, Ll(t) is the contour of the liquid

front at the time t, x
∗

 is a point on the front,  is the

normal to Ll component of the fluid particle velocity
averaged across the height. Note that in (1), the aver�
age particle velocity  also represents the speed of
the front propagation. As  is

the flux through the front cross�section, we obtain the
fundamental equation which gives the front velocity as
a function of the flux and opening:

. (2)

1 The article was translated by the authors.
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Use the Reynolds equation for flow of viscous
incompressible liquid in a narrow channel:

, (3)

where D is a prescribed function or operator; p is the pres�
sure, averaged through the cross�section;  (i = 1, 2) are
components of the average velocity of liquid particles
in a channel cross section; the Cartesian coordinates
x1, x2 are located in the fracture plane. Non opening
fracture along a crack trajectory is assumed as an ini�
tial condition when studying hydraulic fracture. The
boundary condition on the liquid front is the condi�
tion of the prescribed flux q0 at a part Lq and of the pre�
scribed pressure p0 at the remaining part Lp of the con�
tour Ll:

, ; , . (4)

The opening in (3) being unknown, we need elas�
ticity equation connecting the opening w and pressure
p. Additionally, the criterion of linear fracture
mechanics is imposed: KI = KIC, where KI is the stress
intensity factor, KIC is its critical value.

In view of (2), prescribing the boundary conditions
(4) means that there are two conditions at the points of
a liquid front. This leads to difficulties common to
over�determined problems [7–9] when solving the
problem numerically, because the boundary is fixed on
iteration. To find a means to overcome the difficulties,
we study the Nordgren problem [2]. The Nordgren
model considers straight fracture along the x�axis (fig�
ure) with the assumption that the pressure p is propor�
tional to the opening w. Neglecting liquid leak�off and
normalizing the variables, the Eq. (3) reads [2]:

. (5)

The boundary conditions include the prescribed
normalized flux q0 at the inlet x = 0:
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(6)

and zero opening (and flux) at the liquid front x = x∗,

which coincides with the crack tip:

. (7)
The opening is assumed positive for 0 ≤ x < x∗. We shall

also use the speed Eq. (2) which becomes:

υ∗ = . (8)

The problem being self�similar, the solution is rep�
resented as w = t1/5ψ(ε), where ξ = xt–4/5, so that x =

ξt4/5, , , ξ∗ is the

automodel coordinate of the liquid front depending
only on the prescribed flux q0. Then the Eq. (5)
becomes the ordinary differential equation:

, (9)

where , . The

boundary conditions (6) and (7) read:

, (10)

, (11)

and the speed Eq. (8) becomes:

. (12)

It is easily shown that  and  are

constants independent of the flux q0. Since ,

we may prescribe q0 or ξ∗, as convenient. A particular

value of q0 or ξ∗ may also be conveniently taken.

We can now fix ξ∗. Then according to (11), (12), at

a fixed point ξ∗ we have prescribed both the function y

and its derivative . Thus, for the equation of the sec�

ond order (9) we have a Cauchy problem. Its solution

defines y(0) and  and consequently the flux q0 at

ξ = 0. A small error when prescribing q0 in (10)
excludes the existence of the solution of the BV prob�
lem (9)–(11). By definition [7], the BV problem (9)–
(11) is ill�posed and needs regularization [8, 9].
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Conversely, the Cauchy problem (9), (11), (12) is
well�posed and leads to a bench�mark solution. We
obtained the solution by applying the fourth order
Runge�Kutta scheme to the system of two differential

equations in unknowns , , equiv�

alent to (9). The constants C∗ and C0 evaluated with

seven significant digits are: C∗ = 0.7570913, C0 =

0.5820636. For the value q0 = 2/π, used by Nordgren
[2], we have ξ∗ = 1.0073486, ψ(0) = 0.8390285 against

the values , ψ(0) = 0.83 given by this author

with the accuracy of about one percent. Bench�mark
values of the function y(ξ) and its derivative served us
to evaluate the accuracy of further calculations
obtained by using various approaches.

We could see that when solving the BV problem
(9)–(11) it is impossible to obtain more than two cor�
rect digits. What is notable, this level of accuracy was
obtained even when using a rough mesh with only one�
hundred nodes. This implies that using a rough mesh
may serve to regularize the problem when high accu�
racy is not needed. For fine meshes, we could see
strong deterioration of the results near the liquid front
ξ = ξ∗.

Likewise, our attempts to accurately solve the
problem (5)–(7) also failed when using time steps with

finite difference approximations for  and  at a

step. By no means could we have three correct digits,
and the results always strongly deteriorated near the
liquid front ??. Again, fine meshes did not improve the
accuracy as compared with a rough mesh having the

step  = 0.01.

The experiments confirm that the ill�posed prob�
lem under consideration cannot be solved accurately
without regularization. A regularization method is
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Scheme of the problem on hydraulic fracture propagation.



438

DOKLADY PHYSICS  Vol. 56  No. 8  2011

LINKOV

suggested by the conditions (11), (12). Indeed, they
yield the approximate Eq.  near the

front. Hence, instead of prescribing a boundary condi�
tion at the front ξ = ξ∗, we impose it at a point

 at a small relative distance ε from the

front:

. (13)

The BV problem (9), (10), (13) is well�posed; it
may be solved by finite differences. It appears that with

ε = 10–3, 10–4, the results for the steps  = 10–3,

10–4, 10–5, 10–6 coincided with those provided by the
bench�mark solution. The results are stable if ε and Δς
are not simultaneously too small (ε, Δς > 10–5). How�
ever, as expected, the results deteriorate when both ε
and Δς are too small; they become absolutely wrong
when  = 10–6. We could also see that as ε
increases, the accuracy decreases and it actually does
not depend on the step if the latter is small enough. In
particular, for the step Δς =0.1, the accuracy is one
percent for ε = 0.01, and the results stay at the same
accuracy level even for ε = 10–9.

The suggested regularization consists in using the
speed equation together with a prescribed boundary
condition to formulate the boundary condition at a
small relative distance ε behind the front rather than
on the front itself. We call such an approach ε�regular�
ization. It is applicable in general 1D and 2D cases
when a self�similar formulation is not available or is
not used. To illustrate, we employed the ε—regular�
ization for the starting Eq. (5) under the boundary
conditions (6), (7). In terms of the variable Y = w3, the
prescribed condition (7) and the speed Eq. (8) yield

at points close to the front. Hence, the boundary con�
dition at a point x

ε
 = x∗(1 – ε) with the relative dis�

tance ε from the front is:

. (14)

Thus, the regularized problem consists in solving
(5) under zero�opening initial condition and the
boundary conditions (6) and (14). Numerical experi�
ments have shown that the ε�regularization removes
the difficulties and provides accurate results.

The conclusions of the paper are as follows: (i) the
derived speed equation may serve for tracing hydraulic
fracture by methods of the theory of propagating sur�
faces; (ii) when simulating hydraulic fracture numeri�
cally, it is useful to employ the ε—regularization con�
sisting in prescribing a boundary condition at a small
relative distance s behind the front; (iii) the method
provides an efficient means for solving problems of
hydraulic fracture.
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