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Abstract

The work concerns with the problem of hydraulic fracture propagating in
time. Then in the hypersingular equation, connecting the net-pressure with
the fracture opening, the integrand and limits of integration depend on the
parameter (time). The rate of the pressure change, being of practical signifi-
cance, we derive a rule for evaluation of the time derivative of a hypersingular
integral with respect to a parameter. We present (i) the new concept of the
complex variable hypersingular (CVH) integral with the density and limits of
integration depending on a parameter, (ii) the theorem, which gives the rule
for differentiation of the integral with respect to the parameter, (iii) applica-
tion of the derived rule to the particular case when the fracture propagates
under constant net-pressure.

1 Introduction

Using complex variable (CV) singular and hypersingular integral equations has
proved to be an efficient means for solving various problems of fluid and solid me-
chanics. In particular, they are applied when studying hydraulic fractures (e.g. [1],
[2], [3]). To the date, the theory of the CV singular [4] and hypersingular [5] inte-
grals, refers to problems, in which the boundary of a surface is fixed. Meanwhile,
in problems of hydraulic fractures the boundary of the fracture propagates in time.
Therefore, when considering hydraulic fractures, we need to extend the theory and
to obtain a rule, which allows one to perform the differentiation of the CV singular
and hypersingular integrals with respect to a parameter (time) when the density
and/or contour depend on the parameter.

The main result of the paper is expressed by the proved theorem, which states
that under physically sound assumptions, the usual rule of differentiation of a proper
integral with respect to a parameter stays true for CVH integrals of arbitrary order.
The paper contains also needed prerequisites and illustration of the derived rule by
the example of the hydraulic fracture, propagating at early stage after initiation,
when the net-pressure is actually constant along the fracture surface.
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2 Problem formulation

A mathematical formulation of the problem of hydraulic fracture includes (i) fluid,
(ii) solid, and (iii) fracture mechanics equations (see, e.g. [1], [2]). In this paper
we focus on the second group as that, which defines the dependence between the
net-pressure p and the fracture opening w. In the simplest case of a 2D problem
for a straight crack, propagating along the x-axis, the dependence is given by the
classical equation [6]:

p(x) = −
E

4π(1− ν2)

b∫
a

∂w(τ)

∂τ

dτ

τ− x
, a ≤ x ≤ b, (1)

where E is the elasticity modulus, ν is the Poisson’s ratio of the rock mass, a and
b are points corresponding to the edges of the fracture; the integral on the r.h.s. is
assumed as the singular (principle value) integral. The equation (1) contains the
spatial derivative of the opening rather than the opening itself what is inconvenient
in practical calculations. Thus it is reasonable to re-write (1) in the hypersingular
form:

p(α, x) = −
E

4π(1− ν2)

b(α)∫
a(α)

w(α, τ)dτ

(τ− x)2
, (2)

where we have also taken into account that for a propagating fracture, its edges a,
b, the opening w and the net-pressure p are functions of the time. Thus, equation
(2) defines the change of the net-pressure in time as a hypersingular integral with
the density and limits depending on a parameter α. The latter, in the considered
problem, is the time. The rate of the pressure change ∂p(α, x)/∂α is a characteristic
strongly dependent on the fluid injection regime. Its evaluation is also of need for
numerical modeling of hydraulic fractures. Therefore, it is reasonable to obtain a
rule for evaluation of the derivative of the hypersingular integral in (2) with respect
to the parameter α. To get such a rule, we employ and extend the general theory
of CV hypersingular integrals, presented in [5].

3 Theorem on the derivative with respect to pa-

rameter

Let ab be an open curve (arc) in the complex plane z = x + iy (i =
√
−1). The

equation of the arc is τ(γ) = x(γ)+ iy(γ), where γ is a real parameter such that its
value γa corresponds to start point a, while the value γb corresponds to end point b:
a = x(γa)+ iy(γa), b = x(γb)+ iy(γb). The arc is smooth in the sense explained in
[4]. In further discussion, the positions of the edges a and b may change depending
on a real parameter α. Thus γa = γa(α), γb = γb(α), a = a(α), b = b(α). We
assume that the functions γa(α), γb = γb(α) have Holder continuous derivatives.
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Consider a hypersingular integral of order k

Ik(α, t) =

b(α)∫
a(α)

g(α, τ)

(τ− t)k
dτ (3)

with the density g(α, τ) depending on the parameter α. We assume that the density

has Holder continuous k − th derivative ∂kg(α,τ)
∂τk

with respect to τ for each α and it

also has Holder continuous derivative ∂g(α,τ)
∂α

with respect to α for each τ ∈ ab. For
any fixed α and t ∈ ab, the integral (3) is defined in accordance with the general
theory [5]. Consequently, for a fixed α, the following formulae, used below, are true.

(i) Extended Newton-Leibnitz formula:∫b(α)
a(α)

g(α, τ)

(τ− t)k
dτ = Jg(α, b) − Jg(α, a) +

iπ

k!
g
(k−1)
t (α, t), (4)

where Jg(α, τ) is an antiderivative of the integrand g(α,τ)
(τ−t)k

, that is

∂Jg(α, c)

∂c
=
g(α, c)

(c− t)k
. (5)

(ii) The third regularization formula for k ≥ 2:

d

dt

b(α)∫
a(α)

g(α, τ)

(τ− t)k−1
dτ = (k− 1)

b(α)∫
a(α)

g(α, τ)

(τ− t)k
dτ. (6)

By differentiating (5) with respect to α and changing the order of derivatives with
respect to α and c, what is justified under accepted assumptions, we obtain:

∂

∂c

(
∂Jg(α, c)

∂α

)
=

∂g(α,c)
∂α

(c− t)k
. (7)

Equation (7) means that ∂Jg(α,c)

∂α
is an antiderivative of the function ∂g(α,c)/∂α

(c−t)k
. Then

using this function and its antiderivative in the extended Newton-Leibnitz formula
(4), we obtain:∫b(α)

a(α)

∂g(α,τ)
∂α

(τ− t)k
dτ =

∂Jg

∂α
(α, b) −

∂Jg

∂α
(α, a) +

iπ

k!

∂g
(k−1)
t

∂α
(α, t). (8)

On the other hand, the results of differentiation of the both parts of (4) with respect
to α may be written as

∂

∂α

∫b(α)
a(α)

g(α, τ)

(τ− t)k
dτ =

∂Jg

∂α
(α, b) −

∂Jg

∂α
(α, a) +

iπ

k!

∂g
(k−1)
t

∂α
(α, t)+

+
∂Jg

∂b

db

dα
−
∂Jg

∂a

da

dα
. (9)
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Noting that the sum of the first three terms on the r.h.s. of (9) is given by the
integral in (8), equation (9) becomes:

∂

∂α

∫b(α)
a(α)

g(α, τ)

(τ− t)k
dτ =

∫b(α)
a(α)

∂g(α, τ)

∂α

dτ

(τ− t)k
+
g(α, b)

(b− t)k
db

dα
−
g(α, a)

(a− t)k
da

dα
. (10)

Equation (10) shows that the classical rule for differentiation of a proper integral
with respect to a parameter holds for a CV hypersingular integral of an arbitrary
order, as well. Thus, we have proved the theorem.

Theorem (Differentiation of a CVHI with respect to a parameter). For a smooth
arc a, b with a(α) and b(α) being Holder continuous in a parameter α and for a
density g(α, τ) having k − 1−th Holder continuous derivative with respect to τ and
Holder continuous derivative with respect to α, the derivative of a hypersingular
integral Ik(α, t) with respect to the parameter α has the form (10) similar to the
common rule for proper integrals.

In the problem of hydraulic fracturing, k = 2, α has the meaning of the time,
the integral on the l.h.s. of (10) is proportional to the net-pressure, the density
g(α, τ) is the fracture opening and the derivatives db/dα and da/dα express the
speeds, with which the fracture front propagates. According to (10), the inflence of
the speeds on the rate of the pressure change strongly depends on the values g(α, a)
and g(α, b) of the opening at the points of the front a and b. Usually, near a point
c of the front, the opening tends to zero as (c − τ)γ, where γ > 0. Hence, we need
to extend the theorem to the case when near an edge point c (c = a or c = b) the
density is of the form g(α, τ) = (c− τ)γgγ(α, τ).

4 Extension to densities with derivatives having

power-type singularity at arc tips

Consider a density of the form g(α, τ) = (c−τ)γgγ(α, τ). For generality, we assume
that γ is a complex number with Reγ > 0. Note that if j − 1 < Reγ < j, where j
is non-negative integer, then the derivatives ∂jg(α, τ)/∂τj and ∂jg(c, τ)/∂τj−1∂c are
singular at the point τ = c, tending to infinity as 1/(c−τ)j−Reγ. As the definitions of
the hypersingular integral and the theorem of the previous section employ assump-
tions on the derivatives, there is need in further agreements on the behaviour of the
density. We shall assume that k−2 < Reγ < k−1 and call g(α, τ) = (c−τ)γgγ(α, τ)
the density of class Hk∗. For k = 1, the class Hk∗ coincides with the class H∗, defined
and studied in [4].

For the density of class Hk∗, we may represent the CVHI (3) as the sum of three
integrals

b(α)∫
a(α)

g(α, τ)

(τ− t)k
dτ =

b1(α)∫
a1(α)

g(α, τ)

(τ− t)k
dτ+

a1(α)∫
a(α)

g(α, τ)

(τ− t)k
dτ+

b(α)∫
b1(α)

g(α, τ)

(τ− t)k
dτ, (11)

where a1(α) is an arbitrary point between a(α) and t, while b1(α) is an arbitrary
point between t and b(α). The first of them does not contain the edges as points
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of integration; hence the general theory and the theorem are applicable to it. Two
remaining integrals are usual improper integrals because the point t does not belong
to their intervals of integration; their partial derivatives with respect to α may be
evaluated in a common way because, under the assumptions, the partial derivative
∂g(c, τ)/∂c is integrable. This implies the extension of the theorem.

Extended theorem: for a density of class Hk∗, the theorem holds for points within
an open arc ab.

We shall not dwell on the limit values of the derivative ∂Ik/∂α, when t → c

(c = a or c = b). They require involved calculations and will be discussed in a
paper in preparation.

For k ≥ 2, we have Reγ > 0. Consequently, the density is zero at the edge
points: g(α, c) = 0. Hence, in this case, the differentiation formula (10) means that
it is possible to differentiate under the integral sign:

∂

∂α

∫b(α)
a(α)

g(α, τ)

(τ− t)k
dτ =

∫b(α)
a(α)

∂g(α, τ)

∂α

dτ

(τ− t)k
. (12)

This result is of special significance for hydraulic fractures, because the opening is
zero at the fracture front. In view of the regularization formula (6), used in the form
similar to (11), equation (12) may be written as

∂

∂α

∫b(α)
a(α)

g(α, τ)

(τ− t)k
dτ =

1

k− 1

∂

∂t

∫b(α)
a(α)

∂g(α, τ)

∂α

dτ

(τ− t)k−1
. (13)

In the next section, we shall check this formula by separate evaluation its left
and right hand side for a particular case of the hydraulic fracture propagation.

5 Example

At an early stage of the hydraulic fracturing, the fracture propagates in the toughness
dominated regime, when the influence of viscosity is negligible and the net-pressure
is actually constant along the fracture: p = p(α),∂p/∂x = 0 (recall that in the
considered problem, parameter α is the time, x is the spatial coordinate). Then
for plain-strain conditions, the opening w in (1) is given by the well-known formula
(e.g. [6]):

w(α, τ) =
4(1− ν2)

E
p(α)

√
[τ− a(α)][b(α) − τ],

where we have taken into account that p, a and b may change in time depending
on the injection regime and local changes of fracture toughness. The equation (2)
becomes:

p(α) = −
1

π

b(α)∫
a(α)

g(α, τ)dτ

(τ− x)2
, (14)
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with g(α, τ) = p(α)
√
[τ− a(α)][b(α) − τ]. For the derivative ∂p/∂α = dp/dα, it

yields

dp

dα
= −

1

π

∂

∂α

b(α)∫
a(α)

g(α, τ)dτ

(τ− x)2
. (15)

We want to evaluate the r.h.s. of (15) by employing the derived formula (13) and
to compare the result with the l.h.s. of (15). To this end, the next two identities,
easily following from the general theory [4], [6] for x ∈ ab, are used:

b∫
a

√
(τ− a)(b− τ)dτ

(τ− x)2
= −π,

b∫
a

dτ√
(τ− a)(b− τ)(τ− x)

= 0. (16)

The first of them, actually gives (14) for the considered g(α, τ).
With g(α, τ) = p(α)

√
[τ− a(α)][b(α) − τ], t = x and k = 2, the differentiation

rule (13) yields:

∂

∂α

∫b(α)
a(α)

p(α)
√
[τ− a(α)][b(α) − τ]

(τ− x)2
dτ =

=
dp(α)

dα

∫b(α)
a(α)

√
[τ− a(α)][b(α) − τ]dτ

(τ− x)2
+p(α)

1

2

∂

∂x

b∫
a

(τ− a)db/dα− (b− τ)da/dα√
(τ− a)(b− τ)(τ− x)

dτ.

By using (16) and taking into account that a and b depend only on the time α,
we have

∂

∂α

∫b(α)
a(α)

p(α)
√
[τ− a(α)][b(α) − τ]

(τ− x)2
dτ =

= −π
dp(α)

dα
+ p(α)

1

2

(
db

dα
+
da

dα

)
∂

∂x

b∫
a

τ√
(τ− a)(b− τ)(τ− x)

dτ.

Writing τ = (τ− x) + x, the last integral is represented by the sum

b∫
a

τ√
(τ− a)(b− τ)(τ− x)

dτ =

b∫
a

dτ√
(τ− a)(b− τ)

+x

b∫
a

dτ√
(τ− a)(b− τ)(τ− x)

.

The first term of the sum does not depend on x, while the second term is zero
by the second of (16). Finally, we obtain:

∂

∂α

∫b(α)
a(α)

p(α)
√
[τ− a(α)][b(α) − τ]

(τ− x)2
dτ = −π

dp(α)

dα
,

what actually coincides with (15).
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