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Summary of the thesis

In this thesis we construct an accurate and e�ective numerical algorithm to solve the three classic
1D Hydraulic fracturing (HF) models: PKN, KGD and radial (also called penny-shaped). The
solver works with power-law �uids (and Newtonian as a special case) and with impermeable rocks
or with �uid leak-o� modelled by classic Carter's formula. In KGD and radial models we also
include the possibility to consider the e�ects of �uid induced shear stress on rock deformation
and fracture propagation. The solver is adaptive in space and time, allowing at every stage of
the computation to keep under control the error of the solution and to use the smallest possible
number of approximation points.

A brief description of the general HF problem is presented, and the three classic 1D HF mod-
els are described in detail. A simpli�ed, time independent self-similar version of the 1D models
is also considered. HF models are characterised by a moving boundary, for this reason we use a
suitable normalisation of the variables to move the problem to a �xed interval.
HF models are also characterised by an irregular (possibly singular), asymptotic behaviour of the
solution at the crack mouth and at the crack tip, for this reason we use a carefully chosen change
of variable to smooth the solution at the boundaries. Once the solution has been made smoother,
it can be e�ectively approximated on the Chebyshev nodes with polynomials multiplied by the
Jacobi weight function. Interpolation on Chebyshev nodes of a smooth function guarantees fast
convergence and can be implemented e�ciently using discrete cosine transform (or discrete Fourier
transform). In the case of KGD and radial models we must also evaluate an integral operator that
has an irregular kernel, this requires the use of another smoothing transformation. A fast and
accurate way to evaluate the kernels of the integral operators using symmetric elliptic integrals is
also proposed.
The solution of the problem is further complicated by the fact that the asymptotic behaviour of
the solution can change when passing from a regime to another: storage or leak-o� dominated and
toughness or viscosity dominated. Therefore, the function spaces of the approximants must be cho-
sen even more carefully to be able to keep into account the behaviour of the solution at any regime.

The self-similar and the time-dependent solvers that we propose are based on multigrid meth-
ods, where the solution is �rst found on a coarse grid and successively re�ned on denser grids,
until the error is satisfactory.
Time discretisation is done using implicit Runge Kutta methods, that allow high order of conver-
gence while remaining stable in sti� problems. Time step strategy is also adaptive and step length
is chosen dynamically depending on the solution.
The solution is validated comparing it with some semi-analytical benchmarks present in literature
and its convergence is thoroughly tested. Extensive computations prove that the numerical scheme
is stable and e�cient. It provides accurate results for all the three classic 1D hydraulic fracturing
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models, at all the regimes and with or without �uid leak-o�. The algorithm can also be easily
modi�ed to work with di�erent �uid and leak-o� models.

Finally, we run several simulations with oscillating pumping rate, oscillating leak-o� coe�cient
and oscillating toughness, to see how this a�ects the behaviour of the solution compared to the
case with constant parameters.
In addition we investigate the e�ects of �uid induced shear stress on the fracture walls. We com-
pare the results obtained with the modi�ed KGD and radial models with those coming from the
classic versions.
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Chapter 1

Introduction

Hydraulic fracturing (HF) is a process in which large quantities of �uid, possibly containing small
solid particles, is pumped into a fracture inside a rock layer. The high pressure exerted by the
�uid subsequently causes the fracture to expand and extend. Fractures are usually very thin,
usually some millimeters, but can be very long, even several hundred meters. This complicated
solid-�uid interaction can be found in technological processes, like in fracking, geothermal energy
or carbon-storage, but also in nature, like in magma intrusion in lithosphere, subglacial drainage
of water or formation of mineral veins.

1.1 Short historical note on mathematical modelling of HF

The mathematical studies on fracture models started in the 1940s with Muskhelishvili [52] and
Sneddon [70, 33]. In the 1950s their results were used to produce the �rst mathematical models of
HF. In 1955 Khristianovic and Zheltov [39] studied the problem in the case of a planar fracture.
In 1961 Perkins and Kern [59] created the so-called PK model. The crack is assumed to be very
long and with constant height, therefore plane strain condition is assumed perpendicular to crack
propagation direction, resulting in an elliptical cross section. In 1969 Geertsma and de Klerk [27]
improved the model introduced by Khristianovic and Zheltov, creating the so-called KGD model.
The fracture is assumed to be very short and with constant height, therefore the fracture can be
considered as planar. In the same paper they also considered the case of a radial (or penny-shaped
fracture). In this case the rock formation is assumed to be uniform and therefore the crack is axis-
symmetric. In 1972 Nordgren [53] modi�ed the PK-model adding the leak-o� e�ect using Carter's
formula, resulting in the so-called PKN model. The PKN, KGD and radial models constitute the
three classic 1D models. Variations of them were generally used for designing treatments until the
1990s and are sometimes still used today.
While being e�ective in several cases, classic 1D models are not good with layered reservoirs where
the height of the fracture cannot be assumed constant. The �rst attempts to address the problem
were made in late 1970s [67] and led to the creation and development of the pseudo 3D (P3D)
models during the 1980s. The main limitation of the P3D models is that the �uid �ow is still 1D
in space and fracture propagates in a �xed direction.
In the 1980s the development of planar 3D (PL3D) models [16] also started. In this case the �uid
�ow direction is no longer predetermined and the full elasticity equation is used to describe the
relation between �uid pressure and fracture width. PL3D models are more accurate than P3D but
computationally much more expensive. They are needed for example when the rock layer in the

1



2 CHAPTER 1. INTRODUCTION

middle of the fracture is sti�er than the ones above or below, resulting in a crack that does not
have a convex shape.
There have also been attempts to model fully 3D HF models. See for example discrete elements
method [19], �nite elements method [79], boundary elements method [77]. The task is still com-
putationally very heavy and there are unsolved questions related to the propagation of fractures
in complex modes.

Since the early 2000s technological advances have made application of HF to shale formations
more economic, this has led to a sharp increase in HF treatments and to a renewed interest in
mathematical modelling. There has also been a comeback to the study of the fundamentals of HF.
Much e�ort has been made to fully understand the classic models rather than to try to develop
new models that keep into account more complex environmental conditions. The behaviour of
the KGD and radial problems near the crack tip has been thoroughly studied using asymptotic
theory. This was done for di�erent combinations of toughness and leak-o� regimes [47, 48]. Several
numerical solutions for KGD and radial models have been computed for di�erent combinations of
levels of toughness (zero, small, �nite, large) and leak-o� (impermeable rocks, permeable). The
studies carried on led to the understanding of the dominant factors in HF: fractures are controlled
by leak-o� or storage and by toughness, or viscosity. During its evolution, a fracture moves among
these regimes.

1.2 Motivation

Huge progresses have been made since the beginning of numerical modelling of HF but, despite
complex 2D and 3D models are now available, the 1D case still remains challenging. In this work
we will consider the three classic 1D HF models: PKN, KGD and radial (or penny-shaped). In-
deed it is important to get full understanding of these simpli�ed models, because they can provide
useful information about the more general cases. For instance the near tip behaviour of KGD and
radial models is the same as the one of the planar 2D case. The 1D problem can also be used
to see the e�ect of changing the problem parameters, or to test di�erent �uid models, modi�ed
elasticity operators and fracture propagation conditions. Moreover a new solving method for the
1D problem might be generalisable to higher dimensional cases or o�er new ideas to improve what
already existing.

Although PKN, KGD and radial are 1D models, the unique features associated prevents the use
of standard approaches. Indeed the main di�culties arise from:

� presence of a moving boundary;
� strong non-linearity coming from the moving boundary and the �uid �ow equation;
� irregular asymptotic behaviour of the variables at the crack tip and mouth;
� change in the asymptotic behaviour of the variables when changing regime;
� presence of an integral operator (in KGD and radial).

Much research has been done on HF numerical simulation in the recent years [2, 22, 28, 29, 30, 31,
41, 42, 51, 54, 57, 58, 65, 82, 83]. In particular we will take as a starting point for our work the solver
for PKN, KGD and radial models, with power-law �uid rheology, developed in [56, 61, 80].This
solver in many situations produces remarkable performances, however the case of small toughness
still remains a challenge and Carter's model for �uid leak-o� has not yet been implemented. It
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also shows some limitations in the case of the time-dependent problem, when di�cult boundary
conditions are supplied.

The aim of our work is to build an updated solver that overcomes these problems and is able
to provide a fast and accurate solution in all conditions. In addition our solver will be also adap-
tive in time and space, allowing to keep the error under control at every step, while at the same
time minimising the amount of computations required.
To reach our goal we will start from the main points presented in the aforementioned papers:

� normalisation of the problem to pass from a moving to a �xed boundary;
� appropriate treatment of the asymptotic behaviour of the solution at the boundary;
� modi�ed formulation of the elasticity integral operator.

We underline that special attention must be given to the asymptotics, because of their irregularity.
A good solver cannot be built without keeping this into account properly, in particular if we want
to use e�ectively high order approximation. Indeed we will use high order approximation both in
time and space, allowing us to obtain high accuracy with few discretisation points.
Finally we will implement in the KGD and radial models the modi�ed elasticity equation and
fracture propagation condition proposed in [81], that keeps into account the e�ect of shear stress.

1.3 Structure of the thesis

In chapter 2 we will discuss HF models. We will start stating the general equations that describe
the physical phenomena involved in HF, then we will pass to the classic 1D models. For each
PKN, KGD and radial models we will see which assumptions are taken to reduce the general
problem to 1D and then write the relative governing equations. We will also see what is the
asymptotic behaviour of the solution, which plays a fundamental role in the numerical solution of
the problem, and �nally describe the simpli�ed self-similar problem, that does not depend on time.

In chapter 3 we will discuss the numerical methods we will use to approximate the variables
of the problem in space. We will do it using polynomial interpolation on Chebyshev nodes, a
method that allows a very good accuracy with few nodes if applied properly. We will see how to
compute the interpolant, evaluate it and integrate it in a fast and stable way using the discrete
cosine transform or in alternative the discrete Fourier transform. However in HF the variables
have a non-smooth at the interval endpoints, therefore Chebyshev interpolation cannot be applied
directly. We will see how to deal with the problem smoothing the solution through a suitable
change of variable. In KGD and radial models an additional challenge is presented by the evalu-
ation of the integral operator that appears in the elasticity equation. The task is made easier by
the modi�ed formulation given in [56, 80], but it still requires a special approach to be tackled
e�ectively. Finally we will see how to compute both the kernels of KGD and radial in a fast and
accurate way, expressing them in terms of symmetric elliptic integrals.

In chapter 4 we will describe our solver for the self-similar problem. We will see how to ap-
ply the methods described in chapter 3 to discretise the problem. Particular attention is needed in
the KGD and radial models, where the asymptotic behaviour of the approximant must be carefully
chosen to have a solver capable to work with all values of toughness (large, small and 0). Then
the non-linear system resulting from discretisation will be solved with a �xed point iteration, like
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proposed in [56, 80] and in alternative using Newton's method, the latter implementation being
preparatory for the solver of the time-dependent problem. In the implementation of Newton's
method we will study the advantage of solving the arising linear systems using an iterative method
instead of a direct one. Our solver will also use the idea of multigrid methods, where a solution
is found on a coarse mesh and then is used as an initial guess on a denser one and so on. This
allows to spare computational time performing a good part of the iterations with coarser grids
while only few with the denser ones. Finally we will validate our solution comparing it with the
semi-analytical benchmarks provided in [55, 56, 60, 61] and then evaluate the convergence prop-
erties of the solver.

In chapter 5 we will describe the solver for the time-dependent problem. The spacial discreti-
sation is essentially the same that the one we used for the self-similar problem, apart from the
case of PKN model with Carter leak-o� that needs a special treatment for the asymptotics. For
the temporal discretisation we will use some implicit Runge Kutta methods, that allow high order
convergence while remaining stable in case of sti� problems. As in the self-similar case, the non-
linear system resulting from discretisation will be solved with Newton's iteration and a multigrid
technique. The time step will be chosen dynamically. Finally we will validate our solution and
evaluate the convergence properties of the solver comparing it to the self-similar solution, and with
some long time asymptotes in the case of Carter leak-o�.

In chapter 6 we will test the solver for the 3 classic 1D HF model with di�erent values of pa-
rameters and boundary conditions. We will see the e�ect of oscillating pumping rate, oscillating
leak-o� coe�cient and oscillating toughness, compared to the case with constant parameters.

In chapter 7 we will discuss the modi�ed versions of the classic KGD and radial models pro-
posed in [55, 81]. In these new models elasticity equation and fracture propagation condition are
modi�ed to keep into account the e�ect of shear stress. Finally we will compare the solutions
obtained with the modi�ed and the classic models.

In chapter 8 we will discuss some ideas about possible future implementations, that include di�er-
ent �uid and leak-o� models and a di�erent change of variable to smooth the asymptotics.



Chapter 2

Hydraulic fracturing models

In Hydraulic fracturing (HF) several physical processes take place at the same time: �uid �ow,
rock deformation, rock fracture and, if the rocks are permeable, �uid leakage through the fracture
walls. Each of these processes can be modelled through a speci�c set of equations.
The solution of the most general formulation of the problem is extremely challenging, but under
some assumptions the general set of equations can be simpli�ed producing some simpler models
that it is possible to tackle e�ectively.

2.1 General model

We state here the equations that describe each process happening in HF. All formulas in this
section are written in Cartesian coordinates and using Einstein summation convention. Einstein
summation convention assumes that when an index variable appears twice in a single term, it
implies the summation of that term over all the values of the index. For example, if the indices
can range over the set {1, 2, 3}, then the equation

y =
3∑
i=1

cixi (2.1)

is simpli�ed by the convention to

y = cixi. (2.2)

We will also use the following shorthands: ∂t for ∂/∂t, ∂tt for ∂
2/∂t2 and (•),i for ∂/∂xi.

Physical constants

Here we list all the physical constants that will be used in the following.

� Rocks (elasticity and fracture):
ρe - mass density
E - Young's modulus
ν - Poissons's ratio
G - shear modulus
K - bulk modulus
λe - Lam�e's �rst parameter
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6 CHAPTER 2. HYDRAULIC FRACTURING MODELS

µe - Lam�e's second parameter
KIC - toughness.

� Fluid:
ρf - mass density
µn - Newtonian �uid viscosity
Kpl - Power-law �uid consistency index
npl - Power-law �uid behaviour index
µc,0 - Carreau �uid viscosity at 0 shear rate
µc,∞ - Carreau �uid viscosity at in�nte shear rate
λc - Carreau �uid time parameter
nc - Carreau �uid power-law parameter.

� Rocks (porous medium):
φp - porosity
kp - permeability.

Elasticity

In general in HF, linear elasticity is used to describe the rock deformation under load. Linear
elasticity is based on the following sets of partial di�erential equations [68].
� Equations of motion (Newton's second law):

σij,j + Fi = ρe∂ttui, (2.3)

where σij = σji is the Cauchy stress tensor, Fi are the body forces, ρe is the mass density and ui
is the displacement (3 equations).
� Strain-displacement equations for small deformation:

εij =
1

2
(ui,j + uj,i), (2.4)

where εij = εji is the strain (6 equations).
� Constitutive equations (Hooke's law) for an isotropic and homogeneous material:

σij = λeδijεkk + 2µeεij, (2.5)

where δij is the Kronecker delta, λe and µe are Lam�e's �rst and second parameters (6 equations).
In particular µe = G where G is the shear modulus and λe = K− 2

3
µe where K is the bulk modulus.

Boundary conditions can be given in terms of displacement, stress, or a combination of them.

Substituting (2.4) into (2.5) and then everything into (2.3) one obtains the displacement equa-
tion of elastodynamics (3 equations), also known as Navier-Cauchy equation:

µeui,jj + (µe + λe)uj,ij + Fi = ρe∂ttui. (2.6)

In general the HF process is very slow, much slower than the speed of the waves in the rocks,
therefore the inertial term can be neglected, reducing to a static problem (note that this might not
hold if the crack is very small and the pumping rate is very high). Moreover for small deformations
in rocks body forces (gravity) can be neglected. We obtain

µeui,jj + (µe + λe)uj,ij = 0. (2.7)
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Fracture

In HF, linear elastic fracture mechanics (LEFM) is used to describe fracture propagation. It is
based on Gri�th's criterion [34] that says that for a crack to propagate, the energy used to create
new surface must be equal to the potential energy released from the elastic material. However,
at the beginning Gri�th's idea only worked for brittle materials, but later Irwin [37] was able
to extend it to ductile materials, considering the contribution in energy dissipation of the plastic
deformation near the crack tip. Irwin also introduced the concept of stress intensity factor KI , a
quantity that describes the asymptotic behaviour of the stresses at the crack tip in a linear elastic
material. In case of brittle materials the elastic energy released during crack propagation, and
consequently Gri�th's criterion, can be expressed in terms of the stress intensity factor.
We consider the case when plane strain is assumed, fracture is mode I and the material is brittle
(no plastic deformation), linear elastic, isotropic and homogeneous. Under these conditions [5] the
fracture propagates when

KI ≥ KIC , (2.8)

where KIC is the toughness of the material. In addition the stress intensity factor (therefore also
the elastic energy released) can be also expressed in terms of the J-integral

KI =

√
EJ

1− ν2
, (2.9)

where E is the Young's modulus, ν the Poisson's ratio. The J-integral [63] is de�ned as

J =

�
Γ

(
Wdx2 − ti

∂ui
∂x1

ds

)
(2.10)

W =

� εij

0

σijdεij (2.11)

ti = σijnj, (2.12)

where x1 is the crack propagation direction, x2 is the normal to the crack plane, Γ is an arbitrary
path on the plane (x1, x2) clockwise around the apex of the crack,W is the density of strain energy,
ti is the surface traction. For linear elasticity [68] we have that

W =
1

2
σijεij. (2.13)

Fluid �ow

In HF the �uid is most commonly modelled as Newtonian, however to better describe the �uid
behaviour, non-Newtonian models can be used. In particular we consider here the case of gener-
alised Newtonian �uids, for which the viscosity is expressed as a function of the shear rate [36]
whereas in the Newtonian case the �uid viscosity is assumed to be constant.
· Newtonian �uid:

µe�(γ̇) ≡ µn, (2.14)

where µe� is the e�ective viscosity, γ̇ is the shear rate and µn is the viscosity (constant viscosity).
· Power-law �uid:

µe�(γ̇) = Kplγ̇
npl−1, (2.15)
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where Kpl is the �ow consistency index and npl is the �ow behaviour index. If Kpl = µn and
npl = 1 we obtain the Newtonian �uid.
· Carreau �uid:

µe�(γ̇) = µc,∞ + (µc,0 − µc,∞)
(
1 + (λcγ̇)2

)nc−1
2 , (2.16)

where µc,0 is the viscosity at zero shear rate, µc,∞ is the viscosity at in�nite shear rate, λc is a time
parameter and nc is a power-law parameter. If µc,0 = µc,∞ = µn we obtain the Newtonian �uid.

Fluid dynamics can be described by the following set of partial di�erential equations [1]:
� Equations of motion (Cauchy momentum equation):

ρf (∂tvi + vi,jvj) = −p,i + τij,j + Fi, (2.17)

where ρf is the mass density, v is the �ow velocity, p is the pressure, τij = τji is the deviatoric
stress tensor, Fi are the body forces (3 equations).
� Strain-�ow velocity equations:

εij =
1

2
(vi,j + vj,i), (2.18)

where εij = εji is the strain (6 equations).
� Shear rate-strain equation:

γ̇ =
√

2εijεji, (2.19)

where γ̇ is the shear rate (1 equation).
� Constitutive equations for an isotropic, homogeneous, incompressible generalised Newtonian
�uid:

τij = 2µe�(γ̇)εij, (2.20)

where µe� is the e�ective viscosity (6 equations).
� Mass conservation for an incompressible �uid (1 equation):

vi,i = 0. (2.21)

Boundary conditions can be given in terms of �ow velocity, stress and pressure or as a combination
of them.

Substituting (2.20), (2.19), (2.18), (2.21) into (2.17), one obtains the �ow velocity equation of
�uid dynamics (3 equations plus continuity):

ρf (∂tvi + vi,jvj) = −p,i + µe�vi,jj + µe�,j(vi,j + vj,i) + Fi (2.22)

vi,i = 0. (2.23)

In the case of a Newtonian �uid µe� ≡ µn and one obtains the Navier-Stokes equation:

ρf (∂tvi + vi,jvj) = −p,i + µnvi,jj + Fi (2.24)

vi,i = 0 (2.25)

In general in HF Reynolds number is very small (creeping �ow), therefore the inertial term can be
neglected. The fracture is very thin, therefore body forces (gravity) can be neglected. We obtain

− p,i + µe�vi,jj + µe�,j(vi,j + vj,i) = 0 (2.26)

vi,i = 0. (2.27)
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Fluid �ow in a porous medium

In HF the leakage of the �uid into the surrounding rocks is modelled as a �uid �ow in a porous
medium, that can be described using the following partial di�erential equations [7]:
� Flow through an isotropic, homogeneous porous medium for an isotropic, homogeneous, incom-
pressible, generalised Newtonian �uid [66]:

µe�(γ̇e�)φpvi = −kpp,i, (2.28)

where µe� is the e�ective viscosity of the �uid, γ̇e� is the e�ective shear rate, φp is the porosity of
the medium, vi the velocity of the �uid, kp the permeability of the medium and p the pressure of
the �uid (3 equations).
� Mass conservation for an incompressible �uid (1 equation):

vi,i = 0. (2.29)

Boundary conditions can be given in terms of �uid velocity, pressure or as a combination of them.

The �ow through a porous medium can be also expressed in terms of the �uid �ux using the
relation qi = φpvi and one obtains (3 equations plus continuity):

µe�qi = −kpp,i (2.30)

qi,i = 0. (2.31)

In the case of a Newtonian �uid µe� ≡ µn and one obtains Darcy's law:

µnqi = −kpp,i (2.32)

qi,i = 0. (2.33)

Usually in HF the �uid leakage �ow is slower than crack propagation, so the �uid does not invade
the area in front of the crack. Actually in some cases it has been seen that the �uid does not
reach the tip at all leaving a small gap, the so called �uid lag. Also the pressure at the fracture
walls changes slowly in space, therefore the leak-o� can be considered locally and in the direction
perpendicular to the fracture plane. So we can write q = qnfnf , where nf is the normal to the
fracture plane, and the equations reduce to:

µe�qnf = −kpp,nf (2.34)

q′nf = 0. (2.35)

2.2 PKN

In 1961 Perkins and Kern [59] introduced the PK model, where they used the classical result for
a plane strain crack by Sneddon [69]. Later in 1972 Nordgren [53] adapted the model adding �uid
leak-o� producing the PKN model.
We describe here the PKN model, we will state all the equations and boundary conditions. Then we
will normalise the problem and describe the asymptotic behaviour of the variables at the crack tip.
Finally we will give a simpli�ed self-similar formulation that holds under some special assumptions.
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Coordinates and variables

We de�ne coordinates and variables for the PKN model.

Figure 2.1: Sketch of the PKN model, half fracture.
The height h is constant and the cross-section is elliptical. Adapted picture from [2].

� Coordinates (see �gure 2.1):
t time
x-axis direction of propagation of the fracture
y-axis direction of the height of the fracture
z-axis direction of the width of the fracture.

� Variables (see �gure 2.1):
h crack height
l(t) crack length
Cx cross section of the fracture (ellipse on the y, z-plane of centre (x, 0, 0))
w(t, x, y) crack width
wmax(t, x) := max

−h/2≤y≤h/2
w(t, x, y) ≡ w(t, x, 0) maximum crack width over y

w̄(t, x) := 1/h
� h/2
−h/2w(t, x, y)dy ≡ π/4 wmax(t, x) crack width averaged over y

p(t, x) �uid absolute pressure (constant on Cx)
v(t, x, y, z) �uid velocity in the x direction
v̄(t, x) := 1/A(Cx)

�
Cx
v(t, x, y, z)dydz �uid velocity averaged over the cross section Cx

q(t, x) ≡
�
Cx
v(t, x, y, z)dydz = hw̄(t, x)v̄(t, x) �uid �ow through the cross section Cx

q̄(t, x) := q(t, x)/h = w̄(t, x)v̄(t, x) �uid �ow per unit of y
ql(t, x) �uid leak-o� through the boundary of the cross section Cx
q̄l(t, x) := ql(t, x)/h �uid leak-o� per unit of y
Q∗(t) �uid �ow at the wellbore.
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We will express the problem in terms of the variables w̄(t, x), p(t, x), v̄(t, x), q̄(t, x), q̄l(t, x) that
depend only on the coordinate x ∈ [−l(t), l(t)]. In the PKN model the crack is assumed to be
symmetric with respect to the x-axis, so we can just consider x ∈ [0, l(t)].

Elasticity

The elasticity equation relates the crack width to the �uid pressure. To simplify the problem the
following assumptions are made:

� the material is linear elastic, homogeneous and isotropic
� the process is quasi-static, therefore inertial forces are neglected
� body forces (gravity) are neglected
� the crack is con�ned between two layers of tougher material, therefore height is constant
� crack length is much greater than crack height and width, therefore plane strain on the
y, z-plane is assumed

� pressure is constant on the y, z-plane.

Under these conditions Sneddon's result for a plane strain crack can be used, therefore the cross
section of the crack is elliptical and its width can be expressed as [78]

w(t, x, y) =
2h(1− ν2)

E
(p(t, x)− σc)

√
1−

(
2y

h

)2

, (2.36)

where E is Young's modulus, ν is Poisson's ratio and σc is the con�ning stress. We can express
the width in terms of the average width

w(t, x, y) =
4

π
w̄(t, x)

√
1−

(
2y

h

)2

(2.37)

and we obtain that

w̄(t, x) = ke(p(t, x)− σc), (2.38)

where the constant ke is

ke =
πh(1− ν2)

2E
. (2.39)

We note that for PKN model the relation between w̄ and p is local: the value of w̄ in x depends
only on the value of p in x.

Fracture propagation

In the PKN model there is not an explicit fracture propagation criterion, in fact we assume that:

� the material is linear elastic, homogeneous and isotropic
� the material is brittle
� the fracture is con�ned between two layers of much higher toughness than the layer where
the fracture is propagating, therefore crack height remains constant.

� the �uid is pumped in at a su�cient rate/pressure, so that fracture is always propagating
and the e�ects of toughness at the crack tip can be ignored.
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Indeed if the �uid is pumped at a su�cient rate, the �uid pressure far from the crack tip is high
and it acts almost only on the con�ning layers and not on the crack tip. Only a small negligible
area close to the tip interacts with crack propagation.
On the opposite, if the �uid pumping is stopped, the �uid pressure gets low along all the fracture.
The action of the pressure on the con�ning layers decreases, while the area where the pressure
interacts with fracture propagation is no longer negligible. Indeed it can be seen that with no
pumping, a PKN fracture with no leak-o� would go on propagating to in�nite length, that is
clearly not physical.

Continuity

The continuity equation describes mass conservation under the following assumptions:

� �uid is incompressible
� crack height is constant
� crack cross section is elliptical (from elasticity).

Under these conditions mass conservation can be expressed as [78]

∂w̄

∂t
+
∂q̄

∂x
+ q̄l = 0. (2.40)

Fluid �ow

The �uid �ow equation relates the crack width, the �uid �ow and the �uid pressure. To simplify
the problem the following assumptions are made:

� the �uid is incompressible, homogeneous and isotropic
� the �uid is power-law (or Newtonian as a special case)
� Reynolds number is very small, therefore the �ow is creeping (inertial forces are neglected)
� body forces (gravity) are neglected
� crack cross section is elliptical (from elasticity)
� crack height is much greater than width (eccentricity tends to 1)
� crack length is much greater than width, therefore crack width is quasi-constant
� leak-o� is small, therefore �uid �ow is quasi-constant
� pressure is constant on the y, z-plane.

Under these assumptions lubrication theory can be applied and �uid �ow can be described by
Poiseuille equation for a pipe with elliptical cross section with eccentricity that tends to 1 [43]

∂p

∂x
= −kf

q̄npl

w̄2npl+1
, (2.41)

where the constant kf is

kf = 2Kpl

(
π(1 + πnpl − npl)

2npl

)npl
(2.42)

and where Kpl is the �ow consistency index and npl is the �ow behaviour index for a power-law
�uid.
In particular in HF we are interested in Newtonian �uids (npl = 1 and Kpl = µn) and in pseudo-
plastic (or shear-thinning) �uids (npl < 1). Newtonian �uids have constant viscosity, pseudo-plastic
�uids have a lower viscosity at higher shear rates.
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Leak-o�

The leak-o� equation describes the �uid loss through the fracture walls. To simplify the problem
the following assumptions are made:

� leak-o� process is slower than fracture propagation, therefore the �uid remains in the area
|x| ≤ l(t).

� the fracture is con�ned, therefore the �uid remains in the area |y| > h/2
� pressure at the crack surface changes slowly in space
� pressure at the crack surface changes slowly in time
� �uid is Newtonian.

The �rst three assumptions imply that leak-o� can be considered perpendicular to the fracture
plane and a 1D formula can be applied locally. The last two assumptions applied to the 1D �ow
in a porous medium give Carter's formula for the leak-o�

q̄l = 2
kcl√

t− t0(x)
, (2.43)

where kcl is a constant that depends on the �uid and on the rock formation (usually estimated
experimentally) and t0(x) is the time when the �uid has reached the point x. Carter's leak o�
formula has been derived for Newtonian �uids, nevertheless in HF it is commonly used also in
combination with power-law �uid �ow equation [2]. In our work we will do the same.

Carter leak-o� is singular at the �uid front, if the �uid front coincides with the crack tip then
t−1
0 (t) = l(t) and the asymptotic expansion (x→ l(t)) can be written as

1√
t− t0(x)

=
√
l′(t)

1√
l(t)− x

+
1

4

l′′(t)

l′(t)
3
2

√
l(t)− x+O((l(t)− x)

3
2 ) (2.44)

and the derivation of (2.44) can be found in [40]. If instead the �uid front and the crack tip do
not coincide, it follows immediately that the asymptotic expansion (x→ t−1

0 (t)) is

1√
t− t0(x)

=
√

(t−1
0 )′(t)

1√
t−1
0 (t)− x

+
1

4

(t−1
0 )′′(t)

(t−1
0 )′(t)

3
2

√
t−1
0 (t)− x+O((t−1

0 (t)− x)
3
2 ). (2.45)

Fluid front

In general in HF the �uid front might not coincide with the crack tip, in this case we say that there
is �uid lag. This happens if the �uid pressure p(t, x) tends to get smaller than the pore pressure
pp close to the crack tip. In this case the �uid cannot reach the tip because of the pore pressure
and therefore there is �uid lag.
In the PKN model from the elasticity equation (2.38) and because w̄(t, x) ≥ 0, we have that

p(t, x) ≥ σc. (2.46)

In general in HF we have that σc > pp (otherwise it would not be necessary to perform HF),
therefore we get

p(t, x) > pp, (2.47)

so there is no need to introduce lag between the crack tip and the �uid and the �uid front coincides
with the crack tip.
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Boundary and initial conditions

To have a unique solution we need to set some boundary and initial conditions.
� The crack closes at the tip:

w̄(t, l(t)) = 0. (2.48)

� There is no out�ow at the tip:
q̄(t, l(t)) = 0. (2.49)

� The in�ow at the mouth is Q∗ (the in�ow splits in two because the crack is symmetric):

q̄(t, 0) = q̄∗(t) := Q∗(t)/(2h). (2.50)

� The initial crack opening and length are:

w̄(t∗, x) = w̄∗(x), l(t∗) = l∗. (2.51)

We note that if the pumping rate is high enough for the given fracture volume, then the general
assumptions for HF do not hold. Indeed in this case the inertial terms cannot be neglected because
crack propagation speed might reach the speed of the waves in the rock and the �uid �ow might
become turbulent. As a consequence in this situation the model does not produce a meaningful
result.
We also note that sensitivity analysis to the initial condition [44, 46] has shown that the in�uence
of the initial conditions for the problem of hydraulic fracturing decays rapidly over time. Therefore
a di�erence in the initial condition is rapidly absorbed at the beginning of the process and after
that the evolution of the fracture depends only on the pumping rate. As a consequence the choice
of the initial condition is not crucial for the �nal quality of the simulations.
For this reason, one possible is to start the simulation from a crack with small volume compared
to the pumping rate, no matter the shape. Indeed despite the fact that at the beginning the
simulation might not be meaningful, very rapidly the solution enters the area of validity of the
model and at that point the e�ect of the shape of the initial condition has already been reabsorbed.
A common way to set the initial conditions is to take the self-similar solution (see below) at a small
value of time and with a compatible pumping rate to the one we want to apply.

Normalisation

The problem can be normalised [61], through some rescaling:

x̃ =
x

l(t)
, t̃ =

t

tr
, t̃∗ =

t∗
tr
, tr = (kekf )

1
npl , t̃0(L(t̃)x̃) =

t0(x)

tr
,

L(t̃) = l(t), L∗ = l∗, w̃(t̃, x̃) = w̄(t, x), w̃∗(x̃) = w̄∗(x), p̃(t̃, x̃) = ke(p(t, x)− σc), (2.52)

q̃(t̃, x̃) = trq̄(t, x), q̃∗(t̃) = trq̄∗(t), q̃l(t̃, x̃) = trq̄l(t, x), k̃cl = 2
√
trkcl,

where the parameter k̃cl can assume values greater or equal to zero. One advantage of the normal-
isation is that the domain is now time independent and x̃ ∈ [0, 1].

The equations in the normalised variables become:
� elasticity equation

w̃ = p̃ (2.53)
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� continuity equation

∂q̃

∂x̃
= L′x̃

∂w̃

∂x̃
− L

(
∂w̃

∂t̃
+ q̃l

)
(2.54)

� �uid �ow equation

∂p̃

∂x̃
= −L q̃npl

w̃2npl+1
(2.55)

� leak-o� equation

q̃l =
k̃cl√

t̃− L−1(Lx̃)
(2.56)

� boundary conditions

q̃(t̃, 0) = q̃∗(t̃), q̃(t̃, 1) = 0, w̃(t̃, 1) = 0 (2.57)

� initial conditions

L(t̃∗) = L∗, w̃(t̃∗, x̃) = w̃∗(x̃). (2.58)

From here on we will only consider the normalised PKN problem and we will omit the ∼ symbol
for simplicity. Also we will simply call n the power-law �uid parameter npl.

Asymptotics

Doing some asymptotic analysis it is possible to �nd the asymptotic behaviour of the solution
at the crack mouth and at the crack tip. First we note that the asymptotic behaviour of Carter
leak-o� is independent from the other equations and is:

ql(t, x) ∼
∞∑
i=0

ql0,i(t)x
i as x→ 0+ (2.59)

ql(t, x) ∼
∞∑
i=0

ql1,i(t)(1− x)−
1
2

+i as x→ 1−, (2.60)

where applying the normalisation to (2.44) we get

ql1,0(t) =

√
L′(t)

L(t)
, ql1,1(t) =

L(t)
1
2L′′(t)

4L′(t)
3
2

. (2.61)

We state now the asymptotic behaviour of the other variables. (Note that here and in the following

we will use the notation dpi,j to refer to the asymptotic coe�cients of ∂p(t,x)
∂x

. The name of the
variable dpi,j has just been chosen to be recognisable and must not be intended as a di�erential).
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Crack mouth, when (x→ 0+) the variables are well behaved:

w(t, x) ∼
∞∑
i=0

w0,i(t)x
i (2.62)

q(t, x) ∼
∞∑
i=0

q0,i(t)x
i (2.63)

p(t, x) ∼
∞∑
i=0

p0,i(t)x
i (2.64)

∂p(t, x)

∂x
∼

∞∑
i=0

dp0,i(t)x
i. (2.65)

Crack tip, when (x→ 1−) the asymptotic behaviour depends on the leak-o�.
� In the case of no leak-o� we have that:

w(t, x) ∼
∞∑
i=0

w1,i(t)(1− x)
1

n+2
+i (2.66)

q(t, x) ∼
∞∑
i=0

q1,i(t)(1− x)
1

n+2
+i (2.67)

p(t, x) ∼
∞∑
i=0

p1,i(t)(1− x)
1

n+2
+i (2.68)

∂p(t, x)

∂x
∼

∞∑
i=0

dp1,i(t)(1− x)
1

n+2
+i−1. (2.69)

� In the case of Carter leak-o� we have that:

· when n = 0 the asymptotic behaviour is the same as for no leak-o�,

· when n > 0 the leading term remains the same, but the others change:

w(t, x) = w1,0(t)(1− x)
1

n+2 + w1,1(t)(1− x)
1
2 + h.o.t. (2.70)

q(t, x) = q1,0(t)(1− x)
1

n+2 + q1,1(t)(1− x)
1
2 + h.o.t. (2.71)

p(t, x) = p1,0(t)(1− x)
1

n+2 + p1,1(t)(1− x)
1
2 + h.o.t. (2.72)

∂p(t, x)

∂x
= dp1,0(t)(1− x)

1
n+2
−1 + dp1,1(t)(1− x)−

1
2 + h.o.t., (2.73)

where h.o.t. stands for higher order term. Here for simplicity we have reported only the �rst
two terms, that is what we need to know for our implementation, nevertheless more terms can be
derived, see for example [40] for the case n = 1.
� In the case of Carter leak-o� at the long time asymptote we have that:

· when n = 0 the asymptotic behaviour does not change,
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· when n > 0 the asymptotic behaviour completely changes:

w(t, x) ∼
∞∑
i=0

w1,i(t)(1− x)
n+2
4n+4

+i (2.74)

q(t, x) ∼
∞∑
i=0

q1,i(t)(1− x)
1
2

+i (2.75)

p(t, x) ∼
∞∑
i=0

p1,i(t)(1− x)
n+2
4n+4

+i (2.76)

∂p(t, x)

∂x
∼

∞∑
i=0

dp1,i(t)(1− x)
n+2
4n+4

+i−1. (2.77)

This happens because for large values of time [53], if the pumping rate does not grow too fast

(q∗(t) = o
(
t
2n+1
2n+2

)
as t→∞), the leak-o� term Lq̃l dominates the right hand side of the continuity

equation (2.54) and therefore the two terms that depend on w̃ can be neglected.

Self-similar problem

In the case of no leak-o� it is possible to �nd some self-similar solutions to the problem separating
the time and space components. The variables can be written as

w(t, x) = ŵ(x)φw(t), p(t, x) = p̂(x)φp(t), q(t, x) = q̂(x)φq(t), L(t) = L̂φL(t), q∗(t) = q̂∗φq(t),

where the time-dependent functions are exponential or power-law, that depends on the parameter
γ as shown in table 2.1.

Table 2.1: Behaviour in time of the self-similar solution for PKN model.

φw(t) φp(t) φq(t) φL(t) ρ

exponential eγt eγt e(γ+ρ)t eρt γ + γ
n+1

power-law tγ tγ tγ+ρ−1 tρ γ + n+γ
n+1

The equations become time independent and can be rewritten as follows:
� elasticity equation

ŵ = p̂ (2.78)

� continuity equation
∂q̂

∂x
= L̂

(
ρx
∂ŵ

∂x
− γŵ

)
(2.79)

� �uid �ow equation
∂p̂

∂x
= −L̂ q̂n

ŵ2n+1
(2.80)

� boundary conditions

q̂(0) = q̂∗, q̂(1) = 0, ŵ(1) = 0. (2.81)
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The asymptotic behaviour of the self-similar solution remains the same as the one of the time-
dependent solution.
Interesting cases are the power-law solution when γ = 1

2n+3
that has constant �uid �ow, and the

power-law solution when γ = 0 that has constant pressure, see table 2.1.
In general it is not possible to include Carter leak-o� in the self-similar solution. However it
is possible to include a prede�ned self-similar leak-o� term, provided that the time-dependent
component is chosen properly, see [61].

2.3 KGD

In 1955 Khristianovic and Zheltov [39] and independently in 1969 Geertsma and De Klerk [27]
introduced the KGD model.
As we have done for PKN model, we describe here the KGD model, normalise it, give the asymp-
totic behaviour and the self-similar formulation.

Coordinates and variables

We de�ne coordinates and variables for the KGD model.

Figure 2.2: Sketch of the KGD model, half fracture.
The height h is constant and the cross-section is rectangular. Adapted picture from [2].

� Coordinates (see �gure 2.2):
t time
x-axis direction of propagation of the fracture
y-axis direction of the height of the fracture
z-axis direction of the width of the fracture.

� Variables (see �gure 2.2):
h crack height
l(t) crack length
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Cx cross section of the fracture (rectangle on the y, z plane of centre (x, 0, 0))
w(t, x) crack width (does not depend on y)
p(t, x) �uid absolute pressure (constant on Cx)
v(t, x, z) �uid velocity in the x direction (does not depend on y)

v̄(t, x) := 1/w(t, x)
� w(t,x)/2

−w(t,x)/2
v(t, x, z)dz �uid velocity averaged over the cross section Cx

q(t, x) ≡ h
� w(t,x)/2

−w(t,x)/2
v(t, x, z)dz = hw(t, x)v̄(t, x) �uid �ow through the cross section Cx

q̄(t, x) := q(t, x)/h = w(t, x)v̄(t, x) �uid �ow per unit of y
ql(t, x) �uid leak-o� through the boundary of the cross section Cx
q̄l(t, x) := ql(t, x)/h �uid leak-o� per unit of y
Q∗(t) �uid �ow at the wellbore.

We will express the problem in terms of the variables w(t, x), p(t, x), v̄(t, x), q̄(t, x), q̄l(t, x) that
depend only on the coordinate x ∈ [−l(t), l(t)]. In the KGD model the crack is assumed to be
symmetric with respect to the x-axis, so we can just consider x ∈ [0, l(t)].

Elasticity

The elasticity equation relates the crack width to the �uid pressure. To simplify the problem the
following assumptions are made:

� the material is linear elastic, homogeneous and isotropic
� the process is quasi-static, therefore inertial forces are neglected
� body forces (gravity) are neglected
� the crack is symmetric with respect to the y, z-plane
� the crack is con�ned between two layers of tougher material, therefore height is constant
� crack height is much greater than crack length and width (plane strain is assumed on the
x, z-plane)

� pressure is constant on the y, z-plane.

Under these assumptions, from linear elasticity theory comes the following hyper-singular integral
equation that relates crack width and �uid pressure [80]

p(t, x)− σc = − E

4π(1− ν2)

� l(t)

−l(t)

∂w(t, s)

∂s

ds

s− x
. (2.82)

Because of the symmetry of the crack the equation can be rewritten as

p(t, x)− σc = − E

2π(1− ν2)

� l(t)

0

∂w(t, s)

∂s
I(x, s)ds (2.83)

I(x, s) =
s

s2 − x2
(2.84)

and we note that for a symmetric crack to have a �nite value of p(t, 0) the condition ∂w(t,0)
∂x

= 0
must be ful�lled. It is possible to invert (2.83) obtaining [71] the following weakly-singular integral
equation [80]

− E

2π(1− ν2)

� l(t)

x

∂w(t, s)

∂s
ds =

4

π2

� l(t)

0

(p(t, s)− σc)J (t, x, s)ds (2.85)

J (t, x, s) =
1

2
ln

∣∣∣∣∣
√
l2(t)− x2 +

√
l2(t)− s2√

l2(t)− x2 −
√
l2(t)− s2

∣∣∣∣∣ , (2.86)
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so we can express w as a function of p

w(t, x) = ke

� l(t)

0

(p(t, s)− σc)J (t, x, s)ds, (2.87)

where the constant ke is

ke =
8(1− ν2)

πE
. (2.88)

It is also possible to separate the leading asymptotic term in (2.87) and obtain an alternative
formulation where the kernel of the integral operator is continuous [80]

� l(t)

0

(p(t, s)− σc)J (t, x, s)ds =

� l(t)

0

∂p(t, s)

∂s
K(t, x, s)ds+

√
l2(t)− x2

� l(t)

0

p(t, s)− σc√
l2(t)− s2

ds

(2.89)

K(t, x, s) =
x− s

2
ln

∣∣∣∣∣
√
l2(t)− x2 +

√
l2(t)− s2√

l2(t)− x2 −
√
l2(t)− s2

∣∣∣∣∣− x

2
ln

(
l2(t) + xs+

√
l2(t)− x2

√
l2(t)− s2

l2(t) + xs−
√
l2(t)− x2

√
l2(t)− s2

)
,

(2.90)

so we can express w as

w(t, x) = ke

� l(t)

0

∂p(t, s)

∂s
K(t, x, s)ds+ ke

√
l2(t)− x2

� l(t)

0

p(t, s)− σc√
l2(t)− s2

ds. (2.91)

We note that, di�erently from PKN model, in KGD model the relation between w and p is non-
local: the values of w in x depend on the value of p along all the crack.

Fracture propagation

In the KGD model a fracture propagation criterion is combined with the elasticity equation. We
assume that:

� the material is linear elastic, homogeneous and isotropic
� the material is brittle
� the crack is symmetric with respect to the y, z-plane
� crack height is much greater than crack length and width (plane strain is assumed on the
x, z-plane)

� pressure is constant on the y, z-plane.

It is then possible to apply the criterion that the fracture propagates when the stress intensity
factor KI equals the toughness of the material KIC . We consider only regimes in which the crack
is always propagating, so we have

KI = KIC . (2.92)

The stress intensity factor can be expressed as [80]

KI(l(t)) = 2

√
l(t)

π

� l(t)

0

p(t, s)− σc√
l2(t)− s2

ds. (2.93)
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Continuity

As for PKN, mass conservation is applied under the following assumptions:

� �uid is incompressible
� crack height is constant
� crack cross section is rectangular.

Under these conditions mass conservation can be expressed as [80]

∂w

∂t
+
∂q̄

∂x
+ q̄l = 0. (2.94)

Fluid �ow

The �uid �ow equation relates the crack width, the �uid �ow and the �uid pressure. To simplify
the problem the following assumptions are made:

� the �uid is incompressible, homogeneous and isotropic
� the �uid is power-law (or Newtonian as a special case)
� Reynolds number is very small, therefore the �ow is creeping (inertial forces are neglected)
� body forces (gravity) are neglected
� crack cross section is rectangular
� crack height is much greater than width (aspect ratio tends to in�nity)
� crack length is much greater than width, therefore crack width is quasi-constant
� leak-o� is small, therefore �uid �ow is quasi-constant
� pressure is constant on the y, z-plane.

Under these assumptions lubrication theory can be applied and �uid �ow can be described by
Poiseuille equation for a pipe with rectangular cross section and aspect ratio that tends to in�nity
[61]

∂p

∂x
= −kf

q̄npl

w2npl+1
(2.95)

where the constant kf is

kf = 2Kpl

(
2(2npl + 1)

npl

)npl
(2.96)

and where Kpl is the �ow consistency index and npl is the �ow behaviour index for a power-law
�uid.

Leak-o�

What previously said in section 2.2, in the case of PKN model, holds also for KGD model and
therefore the leak-o� formula is the same.



22 CHAPTER 2. HYDRAULIC FRACTURING MODELS

Fluid front

In the case of a power-law �uid, if the presence of some �uid lag at the tip is not taken into account,
it can be seen from asymptotic analysis that the KGD model admits solution only when the �uid
parameter n is smaller than 2. Indeed from (2.122,2.126,2.130) it can be seen that if n ≥ 2 then
(2.105) is not integrable, therefore the problem does not admit solution. Anyway in HF we usually
have n ≤ 1, in which case a solution always exists also with no �uid lag.
However, assuming no �uid lag and n ≤ 1, it might still happen that the value of p(t, x) − σc at
the crack tip becomes negative or even goes to −∞. This contradicts the fact that the pressure of
the �uid must always be greater or equal to the pore pressure p(t, x) ≥ pp ≥ 0.
Therefore in the following we will consider HF problems where the con�ning stress is much greater
than the pore pressure

σc � pp (2.97)

and as a consequence p(t, x) ≤ pp only in a very small area close to the crack tip. In this case �uid
lag can be neglected and the �uid front can be set to coincide with the crack tip. On the contrary,
in case of small toughness and highly pressurised reservoir the in�uence of �uid lag might become
relevant, for more details see for instance [20, 26].

Boundary and initial conditions

As for PKN model, to have a unique solution we need to set some boundary and initial conditions.
� The crack closes at the tip:

w(t, l(t)) = 0. (2.98)

� There is no out�ow at the tip:

q̄(t, l(t)) = 0. (2.99)

� The in�ow at the mouth is Q∗ (the in�ow splits in two because the crack is symmetric):

q̄(t, 0) = q̄∗(t) := Q∗(t)/(2h). (2.100)

� The initial crack opening and length are:

w(t∗, x) = w∗(x), l(t∗) = l∗. (2.101)

What previously said on the choice of the initial condition in section 2.2, in the case of PKN model,
holds also for KGD.

Normalisation

In the same way as for PKN, the model can be normalised [61], through some rescaling.

x̃ =
x

l(t)
, t̃ =

t

tr
, t̃∗ =

t∗
tr
, tr = (kekf )

1
npl , t̃0(L(t̃)x̃) =

t0(x)

tr
,

L(t̃) = l(t), L∗ = l∗, w̃(t̃, x̃) = w(t, x), w̃∗(x̃) = w∗(x), p̃(t̃, x̃) = ke(p(t, x)− σc), (2.102)

q̃(t̃, x̃) = trq̄(t, x), q̃∗(t̃) = trq̄∗(t), q̃l(t̃, x̃) = trq̄l(t, x), k̃cl = 2
√
trkcl, K̃IC =

√
π

2
keKIC ,
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where the parameter k̃cl can assume values greater or equal to zero. The domain is now time
independent and x̃ ∈ [0, 1].

The equations in the normalised variables become:
� elasticity equation

w̃(t̃, x̃) = L(t̃)

� 1

0

∂p̃(t̃, s̃)

∂s̃
K̃(x̃, s̃)ds̃+ K̃IC

√
L(t̃)
√

1− x̃2 (2.103)

K̃(x̃, s̃) =
x̃− s̃

2
ln

∣∣∣∣√1− x̃2 +
√

1− s̃2

√
1− x̃2 −

√
1− s̃2

∣∣∣∣− x̃

2
ln

(
1 + x̃s̃+

√
1− x̃2

√
1− s̃2

1 + x̃s̃−
√

1− x̃2
√

1− s̃2

)
(2.104)

� fracture propagation

K̃IC =

√
L(t̃)

� 1

0

p̃(t̃, s̃)√
1− s̃2

ds̃ (2.105)

� continuity equation
∂q̃

∂x̃
= L′x̃

∂w̃

∂x̃
− L

(
∂w̃

∂t̃
+ q̃l

)
(2.106)

� �uid �ow equation
∂p̃

∂x̃
= −L q̃npl

w̃2npl+1
(2.107)

� leak-o� equation

q̃l =
k̃cl√

t̃− L−1(Lx̃)
(2.108)

� boundary conditions

q̃(t̃, 0) = q̃∗(t̃), q̃(t̃, 1) = 0, w̃(t̃, 1) = 0 (2.109)

� initial conditions
L(t̃∗) = L∗, w̃(t̃∗, x̃) = w̃∗(x̃). (2.110)

From here on we will only consider the normalised KGD problem and we will omit the ∼ symbol
for simplicity. Also we will simply call n the power-law �uid parameter npl.

Asymptotics

As previously done for PKN, it is possible to �nd the asymptotic behaviour of the solution at the
crack mouth and at the crack tip. We start with the asymptotic expansion of the kernel:

K(x, s) ∼
∞∑
i=0

B1−x2
(

3
2
, i
)

2x2i

(
1
2

)(i)

i!
s2i+1 as s→ 0+ when 0 < x ≤ 1 (2.111)

K(x, s) ∼
∞∑
i=0

k1,i(x)(1− s)
1
2

+i as s→ 1− when 0 ≤ x < 1 (2.112)

K(x, s) = x log

(
1

x

)
+

1

2
(x− s) log(|x− s|) + h.o.t. as s→ x when 0 ≤ x ≤ 1, (2.113)
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where Bx(a, b) is the incomplete beta function [21, Eq. 8.17.1] and m(i) is the rising factorial and

k1,0(x) =
√

2− 2x2, k1,1(x) = − 7 + x2

6
√

2− 2x2
. (2.114)

The correctness of expression (2.111) has been veri�ed numerically.

We have already seen in the PKN section the asymptotic expansion of the leak-o� term, we
state now the asymptotic behaviour of the other variables. For simplicity we state here only the
asymptotic terms that we will need in our implementation but more terms can be derived if needed.
For more details about the derivation of the asymptotics see [60, 61]. Note that in the following
formulas the notation [P ] refers to the Iverson bracket, which in our case means that

[n = m] =

{
1 if n = m

0 if n 6= m
(2.115)

Crack mouth, when (x→ 0+) the variables behave like:

w(t, x) = w0,0(t) + w0,1(t)x2 log(x) + h.o.t. (2.116)

q(t, x) = q0,0(t) + q0,1(t)x+ h.o.t. (2.117)

p(t, x) = p0,0(t) + p0,1(t)x+ h.o.t. (2.118)

∂p(t, x)

∂x
= dp0,0(t) + dp0,1(t)x+ h.o.t. . (2.119)

Crack tip, when (x→ 1−) the asymptotic behaviour of the solution depends on the leak-o� and
on the toughness of the material.
� In the case KIC > 0, with no leak-o� or with Carter leak-o�, we have that:

w(t, x) = w1,0(t)(1− x)
1
2 + w1,1(t)(1− x)

3−n
2 log[n=0](1− x) + h.o.t. (2.120)

q(t, x) = q1,0(t)(1− x)
1
2 + q1,1(t)(1− x)

3−n
2 log[n=0](1− x) + h.o.t. (2.121)

p(t, x) = p1,0(t)(1− x)
1−n
2 log[n=1](1− x) + p1,∗(t) + p1,1(t)(1− x)

3−2n
2 log[n=0]+[n= 3

2
](1− x) + h.o.t.

(2.122)

∂p(t, x)

∂x
= dp1,0(t)(1− x)−

n+1
2 + dp1,1(t)(1− x)

1−2n
2 log[n=0](1− x) + h.o.t. , (2.123)

note that in (2.122) the order of the terms depends on n and the pressure is singular when n ≥ 1.
� In the case KIC = 0 with no leak-o� we have that:

w(t, x) = w1,0(t)(1− x)
2

n+2 + h.o.t. (2.124)

q(t, x) = q1,0(t)(1− x)
2

n+2 + h.o.t. (2.125)

p(t, x) = p1,0(t)(1− x)−
n
n+2 log[n=0](1− x) + p1,∗(t) + h.o.t. (2.126)

∂p(t, x)

∂x
= dp1,0(t)(1− x)−

2n+2
n+2 + h.o.t. , (2.127)
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note that in this case the pressure is always singular.
� In the case KIC = 0 With Carter leak-o� we have that:

w(t, x) = w1,0(t)(1− x)
n+4
4n+4 + h.o.t. (2.128)

q(t, x) = q1,0(t)(1− x)
1
2 + h.o.t. (2.129)

p(t, x) = p1,0(t)(1− x)−
3n

4n+4 log[n=0](1− x) + p1,∗(t) + h.o.t. (2.130)

∂p(t, x)

∂x
= dp1,0(t)(1− x)−

7n+4
4n+4 + h.o.t. , (2.131)

note that in this case both the pressure and the �uid velocity v = q/w are always singular.

Self-similar problem

As for PKN, in the case of no leak-o� it is possible to �nd some self-similar solutions to the problem
separating the time and space components. The variables can be written as

w(t, x) = ŵ(x)φw(t), p(t, x) = p̂(x)φp(t), q(t, x) = q̂(x)φq(t),

L(t) = L̂φL(t), KIC(t) = K̂ICφKIC (t), q∗(t) = q̂∗φq(t), (2.132)

where the time-dependent functions are exponential or power-law, that depend on the parameter
γ as shown in table 2.2.

Table 2.2: Behaviour in time of the self-similar solution for KGD model.

φw(t) φp(t) φq(t) φL(t) φKIC (t) ρ

exponential eγt e(γ−ρ)t e(γ+ρ)t eρt e(γ−ρ/2)t γ

power-law tγ tγ−ρ tγ+ρ−1 tρ tγ−ρ/2 γ + n
n+2

the equations become time independent and can be rewritten as follows:
� elasticity equation

ŵ(x) = L̂

� 1

0

∂p̂(s)

∂s
K(x, s)ds+ K̂IC

√
L̂
√

1− x2 (2.133)

� fracture propagation

K̂IC =
√
L̂

� 1

0

p̂(s)√
1− s2

ds (2.134)

� continuity equation
∂q̂

∂x
= L̂

(
ρx
∂ŵ

∂x
− γŵ

)
(2.135)

� �uid �ow equation
∂p̂

∂x
= −L̂ q̂n

ŵ2n+1
(2.136)

� boundary conditions

q̂(0) = q̂∗, q̂(1) = 0, ŵ(1) = 0. (2.137)
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Again the asymptotic behaviour of the self-similar solution remains the same as the one of the
time-dependent solution.
Interesting cases are the power-law solution when γ = 1

n+2
that has constant �uid �ow and the

power-law solution when γ = n
n+2

that has constant toughness, see table 2.1.
As for PKN it is not possible to include Carter leak-o� in the self-similar solution. However it
is possible to include a prede�ned self-similar leak-o� term, provided that the time-dependent
component is chosen properly, see [61].

2.4 Radial

In 1969 Geertsma and De Klerk [27] introduced the radial model together with the KGD.
As we have done for PKN and KGD models, we describe here the radial model, normalise it, give
the asymptotic behaviour and the self-similar formulation.

Coordinates and variables

We de�ne coordinates and variables for the radial model.

Figure 2.3: Sketch of the radial or penny-shaped model.
The fracture is axis-symmetric. Adapted picture from [2].

� Coordinates (see �gure 2.3):
t time
r-axis direction of propagation of the fracture
θ-axis angle around the axis of radial symmetry
z-axis direction of the width of the fracture.

� Variables (see �gure 2.3):
l(t) crack length
Cr cross section of the fracture (cylinder of centre (0, 0, 0), axis z and radius r )
w(t, r) crack width (does not depend on θ)
p(t, r) �uid absolute pressure (constant on Cr)
v(t, r, z) �uid velocity in the r direction (does not depend on θ)

v̄(t, r) := 1/w(t, r)
� w(t,r)/2

−w(t,r)/2
v(t, r, z)dz �uid velocity averaged over the cross section Cr

q(t, r) ≡ 2πr
� w(t,r)/2

−w(t,r)/2
v(t, r, z)dz = 2πrw(t, r)v̄(t, r) �uid �ow through the cross section Cr
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q̄(t, r) := q(t, r)/(2πr) = w(t, r)v̄(t, r) �uid �ow per unit of θ
ql(t, r) �uid leak-o� through the boundary of the cross section Cr
q̄l(t, r) := ql(t, r)/(2πr) �uid leak-o� per unit of θ
Q∗(t) �uid �ow at the wellbore.

We will express the problem in terms of the variables w(t, r), p(t, r), v̄(t, r), q̄(t, r), q̄l(t, r) that
depend only on the coordinate r ∈ [0, l(t)].

Elasticity

The elasticity equation relates the crack width to the �uid pressure. To simplify the problem the
following assumptions are made:

� the material is linear elastic, homogeneous and isotropic
� the process is quasi-static, therefore inertial forces are neglected
� body forces (gravity) are neglected
� the crack is axis-symmetric
� the pressure is axis-symmetric.

Under these assumptions, from linear elasticity theory comes the following hyper-singular integral
equation that relates crack width and �uid pressure [56]

p(t, r)− σc = − E

2π(1− ν2)

� l(t)

0

∂w(t, s)

∂s
I(r, s)ds (2.138)

I(r, s) =


1
r
K
(
s2

r2

)
+ r

s2−r2E
(
s2

r2

)
, s < r

s
s2−r2E

(
r2

s2

)
, s > r.

, (2.139)

where E and K are the complete elliptic integrals of the �rst and second kind. It is possible to
invert (2.138) obtaining [71] the following weakly-singular integral equation [56]

− E

2π(1− ν2)

� l(t)

r

∂w(t, s)

∂s
ds =

4

π2

� l(t)

0

(p(t, s)− σc)J (t, r, s)ds (2.140)

J (t, r, s) =


s
r
F
(

arcsin
(√

l2(t)−r2
l2(t)−s2

)
, s

2

r2

)
, s < r

F
(

arcsin
(√

l2(t)−s2
l2(t)−r2

)
, r

2

s2

)
, s > r,

(2.141)

where F is the incomplete elliptic integral of the �rst kind. So we can express w as a function of p

w(t, r) = ke

� l(t)

0

(p(t, s)− σc)J (t, r, s)ds, (2.142)

where the constant ke is the same as for KGD (2.88)

ke =
8(1− ν2)

πE
. (2.143)
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It is possible to separate the leading asymptotic term in (2.140) and obtain an alternative formu-
lation where the kernel of the integral operator is continuous [56]

� l(t)

0

(p(t, s)− σc)J (t, r, s)ds =

� l(t)

0

∂p(t, s)

∂s
K(t, r, s)ds+

√
l2(t)− r2

� l(t)

0

p(t, s)− σc√
l2(t)− s2

s

l(t)
ds

(2.144)

K(t, r, s) =

s
[
E
(

arcsin
(

s
l(t)

)
| r2
s2

)
− E

(
arcsin

(
s
r

)
| r2
s2

)]
, s < r

s
[
E
(

arcsin
(

s
l(t)

)
| r2
s2

)
− E

(
r2

s2

)]
, s > r,

(2.145)

where E is the incomplete elliptic integral of the second kind. So we can express w as

w(t, r) = ke

� l(t)

0

∂p(t, s)

∂s
K(t, r, s)ds+ ke

√
l2(t)− r2

� l(t)

0

p(t, s)− σc√
l2(t)− s2

s

l(t)
ds. (2.146)

We note that, as in KGD model, the relation between w and p is non-local: the values of w in x
depend on the value of p along all the crack.

Fracture propagation

In the radial model a fracture propagation criterion is combined with the elasticity equation. We
assume that:

� the material is linear elastic, homogeneous and isotropic
� the material is brittle
� crack is axis-symmetric
� pressure is axis-symmetric.

As for KGD it is then possible to apply the criterion that the fracture propagates when the stress
intensity factor KI equals the toughness of the material KIC . We consider only regimes in which
the crack is always propagating, so we have

KI = KIC . (2.147)

The stress intensity factor can be expressed as [56]

KI(l(t)) = 2

√
l(t)

π

� l(t)

0

p(t, s)− σc√
l2(t)− s2

s

l(t)
ds. (2.148)

Continuity

As for PKN and KGD, mass conservation is applied under the following assumptions:

� �uid is incompressible
� crack is axis-symmetric

Under these conditions mass conservation can be expressed as [56]

∂w

∂t
+

1

r

∂(rq̄)

∂r
+ q̄l = 0. (2.149)
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Fluid �ow

The �uid �ow equation relates the crack width, the �uid �ow and the �uid pressure. To simplify
the problem the following assumptions are made:

� the �uid is incompressible, homogeneous and isotropic
� the �uid is power-law (or Newtonian as a special case)
� Reynolds number is very small, therefore the �ow is creeping (inertial forces are neglected)
� body forces (gravity) are neglected
� �uid �ow is axis-symmetric
� crack length is much greater than width, therefore crack width is quasi-constant
� leak-o� is small, therefore �uid �ow is quasi-constant
� pressure is constant on the r, θ-cylinder.

Under these assumptions lubrication theory can be applied and �uid �ow can be described by
Poiseuille equation for a radial �ow [56]

∂p

∂x
= −kf

q̄npl

w2npl+1
, (2.150)

where the constant kf is the same as for KGD (2.96)

kf = 2Kpl

(
2(2npl + 1)

npl

)npl
(2.151)

and where Kpl is the �ow consistency index and npl is the �ow behaviour index for a power-law
�uid.

Leak-o�

What previously said in sections 2.2 and 2.3, in the case of PKN and KGD models, similarly holds
also for radial model and therefore the leak-o� formula is the same.

Fluid lag

What previously said in section 2.3 in the case of KGD model, similarly holds also for radial model
and again we will consider only the case when there is no �uid lag.

Boundary and initial conditions

As for PKN and KGD models, to have a unique solution we need to set some boundary and initial
conditions.
� The crack closes at the tip:

w(t, l(t)) = 0. (2.152)

� There is no out�ow at the tip:
q̄(t, l(t)) = 0. (2.153)

� The in�ow at the mouth is Q∗:

lim
r→0

(rq̄(t, r)) = q̄∗(t) := Q∗(t)/(2π). (2.154)
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� The initial crack opening and length are:

w(t∗, r) = w∗(r), l(t∗) = l∗. (2.155)

What previously said on the choice of the initial condition in sections 2.2 and 2.3, in the case of
PKN and KGD models, holds also for radial.

Normalisation

In the same way as for PKN and KGD, the model can be normalised [56], through some rescaling.

r̃ =
r

l(t)
, t̃ =

t

tr
, t̃∗ =

t∗
tr
, tr = (kekf )

1
npl , t̃0(L(t̃)r̃) =

t0(r)

tr
,

L(t̃) = l(t), L∗ = l∗, w̃(t̃, r̃) = w(t, r), w̃∗(r̃) = w∗(r), p̃(t̃, r̃) = ke(p(t, r)− σc), (2.156)

q̃(t̃, r̃) = trq̄(t, r), q̃∗(t̃) = trq̄∗(t), q̃l(t̃, r̃) = trq̄l(t, r), k̃cl = 2
√
trkcl, K̃IC =

√
π

2
keKIC ,

where the parameter k̃cl can assume values greater or equal to zero. The domain is now time
independent and x̃ ∈ [0, 1].

The equations in the normalised variables become:
� elasticity equation

w̃(t̃, r̃) = L(t̃)

� 1

0

∂p̃(t̃, s̃)

∂s̃
K̃(r̃, s̃)ds̃+ K̃IC

√
L(t̃)
√

1− r̃2 (2.157)

K̃(r̃, s̃) =

s̃
[
E
(

arcsin (s̃) | r̃2
s̃2

)
− E

(
arcsin

(
s̃
r̃

)
| r̃2
s̃2

)]
, s̃ < r̃

s̃
[
E
(

arcsin (s̃) | r̃2
s̃2

)
− E

(
r̃2

s̃2

)]
, s̃ > r̃

(2.158)

� fracture propagation

K̃IC =

√
L(t̃)

� 1

0

p̃(t̃, s̃)s̃√
1− s̃2

ds̃ (2.159)

� continuity equation
∂(r̃q̃)

∂r̃
= L′r̃2∂w̃

∂r̃
− Lr̃

(
∂w̃

∂t̃
+ q̃l

)
(2.160)

� �uid �ow equation
∂p̃

∂r̃
= −L q̃npl

w̃2npl+1
(2.161)

� leak-o� equation

q̃l =
k̃cl√

t̃− t̃0(Lr̃)
(2.162)

� boundary conditions

L(t̃) lim
r̃→0

(r̃q̃(t̃, r̃)) = q̃∗(t̃), q̃(t̃, 1) = 0, w̃(t̃, 1) = 0 (2.163)

� initial conditions
L(t̃∗) = L∗, w̃(t̃∗, r̃) = w̃∗(r̃). (2.164)

From here on we will only consider the normalised radial problem and we will omit the ∼ symbol
for simplicity. Also we will simply call n the power-law �uid parameter npl.
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Asymptotics

As previously done for PKN and KGD, it is possible to �nd the asymptotic behaviour of the
solution at the crack mouth and at the crack tip. We start with the asymptotic expansion of the
kernel:

K(x, s) ∼
∞∑
i=0

B1−x2
(

3
2
, i+ 1

2

)
2x2i+1

(
1
2

)(i)

i!
s2i+2 as s→ 0+ when 0 < x ≤ 1 (2.165)

K(x, s) ∼
∞∑
i=0

k1,i(x)(1− s)
1
2

+i as s→ 1− when 0 ≤ x < 1 (2.166)

K(x, s) = x(1− x) +
1

2
(x− s) log(|x− s|) + h.o.t. as s→ x when 0 ≤ x ≤ 1, (2.167)

where Bx(a, b) is the incomplete beta function, m(i) is the rising factorial and

k1,0(x) =
√

2− 2x2, k1,1(x) =
1− 9x2

6
√

2− 2x2
. (2.168)

The correctness of expression (2.165) has been veri�ed numerically. Note that the kernels of KGD
and radial have the same kind of asymptotic behaviour when s → 1− and when s → x but the
coe�cients are di�erent.

We have already seen in the PKN section the asymptotic expansion of the leak-o� term, we
state now the asymptotic behaviour of the other variables. For simplicity we state here only the
asymptotic terms that we will need in our implementation but more terms can be derived if needed.
For more details about the derivation of the asymptotics see [55, 56].
Crack mouth, when (x→ 0+) the variables behave like:

w(t, x) = w0,0(t) + w0,1(t)x2−n log[n=0](x) + h.o.t. (2.169)

q(t, x) = q0,0(t)x−1 + q0,1(t)x+ h.o.t. (2.170)

p(t, x) = p0,∗(t) + p0,0(t)x1−n log[n=1](x) + p0,1(t)x3−2n log[n=0]+[n= 3
2

](x) + h.o.t. (2.171)

∂p(t, x)

∂x
= dp0,0(t)x−n + dp0,1(t)x2−2n log[n=0](x) + h.o.t. . (2.172)

note that in (2.171) the order of the terms depends on n and the pressure becomes singular when
n ≥ 1.
Crack tip, when (x→ 1−) the asymptotic behaviour is of the same kind of that of KGD.

Self-similar problem

As for PKN and KGD, in the case of no leak-o� it is possible to �nd some self-similar solutions to
the problem separating the time and space components. The variables can be written as

w(t, r) = ŵ(r)φw(t), p(t, r) = p̂(r)φp(t), q(t, r) = q̂(r)φq(t),

L(t) = L̂φL(t), KIC(t) = K̂ICφKIC (t), q∗(t) = q̂∗φq(t)φL(t), (2.173)



32 CHAPTER 2. HYDRAULIC FRACTURING MODELS

Table 2.3: Behaviour in time of the self-similar solution for radial model.

φw(t) φp(t) φq(t) φL(t) φKIC (t) ρ

exponential eγt e(γ−ρ)t e(γ+ρ)t eρt e(γ−ρ/2)t γ

power-law tγ tγ−ρ tγ+ρ−1 tρ tγ−ρ/2 γ + n
n+2

where the time-dependent functions are exponential or power-law, that depend on the parameter
γ as shown in table 2.3.

the equations become time independent and can be rewritten as follows:
� elasticity equation

ŵ(r) = L̂

� 1

0

∂p̂(s)

∂s
K(r, s)ds+ K̂IC

√
L̂
√

1− r2 (2.174)

� fracture propagation

K̂IC =
√
L̂

� 1

0

p̂(s)s√
1− s2

ds (2.175)

� continuity equation
∂(rq̂)

∂r
= L̂r

(
ρr
∂ŵ

∂r
− γŵ

)
(2.176)

� �uid �ow equation
∂p̂

∂r
= −L̂ q̂n

ŵ2n+1
(2.177)

� boundary conditions

L̂ lim
r→0

(rq̂(r)) = q̂∗, q̂(1) = 0, ŵ(1) = 0. (2.178)

Again the asymptotic behaviour of the self-similar solution remains the same as the one of the
time-dependent solution.
Interesting cases are the power-law solution when γ = 2−n

3(n+2)
that has constant �uid input and the

power-law solution when γ = n
n+2

that has constant toughness, see table 2.1.
As for PKN and KGD it is not possible to include Carter leak-o� in the self-similar solution.
However it is possible to include a prede�ned self-similar leak-o� term, provided that the time-
dependent component is chosen properly, see [56].



Chapter 3

Numerical approximation methods

We recall here some theoretical results about polynomial approximation. In hydraulic fracturing,
the presence of singularities at the boundaries makes it impossible to approximate the functions
using global polynomials straight out of the box. We will also have to deal with the kernels of the
integral operators of KGD and radial models that are not smooth and will need a special approach
as well. Through the use of some suitable changes of variable we will see how to use e�ectively
Chebyshev interpolation despite these additional di�culties.
Finally we will discuss about the accurate computation of the kernels of the integral operators of
KGD and radial models. This will be done through the use of symmetric elliptic integrals.

3.1 Chebyshev interpolation

General theory

For more details about this subsection see [75]. In general the interpolation of a function f with a
polynomial pn of degree n is not guaranteed to converge as n→∞, even for analytical functions. A
famous example was given by Runge for the interpolation on equally spaced nodes. This problem
can be overcome with a suitable choice of the interpolation nodes, like the Chebyshev nodes, that
cluster at the boundary of the interval.
Two families of Chebyshev nodes are mainly used, one is formed by the zeros and the other by the
extrema in [−1, 1] of the Chebyshev polynomials of �rst kind. They share similar properties and
both of them have some pros and cons in the implementation. We will use the extrema Chebyshev
nodes, that are de�ned as

xj = − cos(πj/n), j = 0, . . . , n (3.1)

The main advantage to use the extrema instead of the zeros is that they include the endpoints,
that makes easier to apply the boundary conditions in the di�erential equations. It must be also
noted that the sets of n = 2m + 1 nodes are nested.
Now we recall here a theorem about Chebyshev interpolation, that describes its convergence prop-
erties for di�erentiable functions.

Theorem 1. For an integer ν > 0, let f and its derivatives through f (ν−1) be absolutely continuous

on [−1, 1] and suppose that the νth derivative is of bounded variation V . Then for any n > ν its

interpolant on the extrema Chebyshev nodes satis�es

‖f − pn‖ ≤
4V

πν(n− ν)ν
. (3.2)

33
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As a consequence we have for example that the convergence rate for the function |x| is O(n−1) and
for x|x| is O(n−2). More generally it can be seen that the result holds also for non-integer powers,
indeed for example the convergence for the function |x|1/2 is O(n−1/2) and for |x|4/3 is O(n−4/3).
If the irregularity is at the endpoint of the interval one can verify that the rate of convergence is
quadratically faster than if it is inside the interval. For example the convergence rate for (1−x)1/2

is O(n−1) and for (1− x)4/3 is O(n−8/3).
Finally a theorem that describes convergence for analytic functions.

Theorem 2. Let a function f analytic in [−1, 1] be analytically continuable to the open Bernstein

Ellipse Ep, where it satis�es |f(x)| ≤ M . Then for each n > 0 its interpolant on the extrema

Chebyshev nodes satis�es

‖f − pn‖ ≤
4M

ρn(ρ− 1)
. (3.3)

Summarising, the smoother the function, the faster the convergence. On the other hand, con-
vergence for non-continuous functions is not guaranteed: for example it can be seen that for the
function sign(x) there is indeed no convergence. The interpolant shows an oscillating behaviour
around the jump, with the amplitude decaying at a slow rate O(k−1), where k is the distance in
nodes from the discontinuity.
To apply e�ectively Chebyshev interpolation is therefore crucial to have some regularity.

Computation of the polynomial interpolant

We give here the de�nitions of discrete Fourier transform (DFT), type-I discrete cosine and sine
transforms (DCT-I,DST-I) and type-I discrete Chebyshev transforms (DTT-I,DUT-I).
We will extensively use DTT-I, DUT-I and their inverses to perform polynomial interpolation and
integration, therefore it is important to have a fast implementation.
DST-I, DTT-I, DUT-I and their inverses can be all expressed in terms of DFT or DCT-I for which
fast and accurate algorithms are widely available.

Discrete Fourier transform

The discrete fourier transform, (DFT) of a vector of complex numbers x = (x0, x1, . . . , xN−1) is
another vector of complex numbers X = (X0, X1, . . . , XN−1) de�ned as follows:

X = F(x), where Xk =
N−1∑
n=0

xne
−2πink/N =

N−1∑
n=0

xn [cos(2πnk/N)− i sin(2πnk/N)] . (3.4)

Its inverse can be expressed in terms of the DFT itself

F−1(X) =
1

N
F(X∗)∗. (3.5)

The DFT is widely used in digital signal processing and fast algorithms to perform it (FFT) with
complexity O(N log(N)) have been developed since the 1960s [17]. Libraries with the implementa-
tion of the FFT are widely available for any programming language and a direct implementation
is present in most computational software.
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Type I discrete cosine transform

In general, eight di�erent types of DCT can be de�ned, we are interested only in the type I, so
we will not treat the others. The type I discrete cosine transform (DCT-I) of a vector of real
numbers x = (x0, x1, . . . , xN−1) is another vector of real numbers X = (X0, X1, . . . , XN−1) de�ned
as follows:

X = C(x), where Xk =

N−1∑′

n=0

xn cos

(
πn

k

N − 1

)
(3.6)

=
x0

2
+

N−2∑
n=1

xn cos

(
πn

k

N − 1

)
+
xN−1

2
(−1)k, (3.7)

where the symbol ′ after the sum means that the �rst and last terms are divided by two. Its inverse
can be expressed in terms of the DCT-I itself

C−1(X) =
2

N − 1
C(X). (3.8)

The DCT was �rst introduced in the 1970s [3]. A few years later algorithms based on the same
idea of the FFT but using real instead of complex arithmetics, started to be developed [15]. Like
for FFT, DCT complexity is O(N log(N)) and libraries and implementations are widely available.
In case a good direct implementation of DCT-I is not available, DCT-I can be expressed in terms
of FFT, see Appendix A.1.

Type I discrete sine transform

As for the DCT, eight di�erent types of DST can be de�ned, we will treat only the type I. The
type I discrete sine transform (DST-I) of a vector of real numbers x = (x0, x1, . . . , xN−1) is another
vector of real numbers X = (X0, X1, . . . , XN−1) de�ned as follows:

X = S(x), where Xk =
N−1∑
n=0

xn sin

(
π(n+ 1)

k + 1

N + 1

)
. (3.9)

Its inverse can be expressed in terms of the DST-I itself

S−1(X) =
2

N + 1
S(X). (3.10)

Introduced together with the DCT, the DST can be computed with similar algorithms and same
complexity O(N log(N)).
If a good direct implementation of DST-I is not available, a N -terms DST-I can be expressed
through a N + 2-terms DCT-I as

S(x0, x1, . . . , xN−1) = (Y0 − Y2, Y1 − Y3, . . . , YN−1 − YN+1), where (3.11)

(Y0, Y1, . . . , YN+1) = C
(

0,
(x0, x1, . . . , xN−1)

2 sin (π(1, . . . , N)/(N + 1))
, 0

)
, (3.12)
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or alternatively

S(x0, x1, . . . , xN−1) = 2 sin (π(1, . . . , N)/(N + 1)) (Y1, Y2, . . . , YN), where (3.13)

(Y0, Y1, . . . , YN+1) = C(y0, y1, . . . , yN−1, 0, 0), and yj =
∑

imod 2=jmod 2
i≥j

xi, (3.14)

where the yj can be computed using two cumulative sums.
In case a good direct implementation of DCT-I is not available, DST-I can also be expressed in
terms of FFT, see Appendix A.1.

Type I discrete T Chebyshev transform

As for the DCT and DST, di�erent types of DTT can be de�ned, we will consider only what
we will call the type I discrete T Chebyshev transform (DTT-I) for its similarity to DCT-I. The
DTT-I of a vector of real numbers x = (x0, x1, . . . , xN−1) is another vector of real numbers X =
(X0, X1, . . . , XN−1) de�ned as follows:

X = T (x), where Xk =
N−1∑
n=0

xnTn(zk). (3.15)

In the de�nition above Tn(z) are the Chebyshev polynomials of the �rst kind. They form a basis
of the polynomial space and when z ∈ [−1, 1] thay can be represented as

Tn(z) = cos(n arccos(z)). (3.16)

The zk are the extrema Chebyshev nodes (they are the extrema in the interval [0, 1] of TN−1(z))

zk = − cos

(
π

k

N − 1

)
, k = 0, 1, . . . , N − 1. (3.17)

This means that the computation of the transform T (x) corresponds to the evaluation of the poly-
nomial

∑N−1
n=0 xnTn(z) on the extrema nodes z0, . . . , zN−1. On the opposite, the inverse transform

T −1(X) will give the coe�cients in the Chebyshev basis of the interpolation polynomial that as-
sumes values X0, . . . , XN−1 on the extrema nodes z0, . . . , zN−1.
Since the introduction of the DCT [3] the close relation between the DCT and Chebyshev inter-
polation was clear. Indeed it can be easily seen that a N -terms DTT-I can be expressed through
a N -terms DCT-I as

T (x0, x1, . . . , xN−1) = (YN−1, YN−2, . . . , Y0), where (3.18)

(Y0, Y1, . . . , YN−1) = C(2x0, x1, x2, . . . , xN−2, 2xN−1) (3.19)

and for the inverse, that a N -terms IDTT-I can be expressed through a N -terms IDCT-I as

T −1(X0, X1, . . . , XN−1) = (y0/2, y1, y2, . . . , yN−2, yN−1/2), where (3.20)

(y0, y1, . . . , yN−1) = C−1(XN−1, XN−2, . . . , X0). (3.21)

Therefore, knowing the values of a function on the Chebyshev nodes, it is possible to perform
Chebyshev interpolation in a fast and stable way, that does not require matrix-vector products and
has complexity O(N log(N)). This, combined to the small sensitivity to the Runge phenomenon of
the interpolation on the Chebyshev nodes, makes possible to use e�ectively high order polynomials
for approximation.
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Type I discrete U Chebyshev transform

As we did for the Chebyshev polynomial of the �rst kind, we do the same for the Chebyshev
polynomials of the second kind and consider what we will call the type I discrete U Chebyshev
transform (DUT-I). The DUT-I of a vector of real numbers x = (x0, x1, . . . , xN−1) is another vector
of real numbers X = (X0, X1, . . . , XN−1) de�ned as follows:

X = U(x), where Xk =
N−1∑
n=0

xnUn(zk). (3.22)

In the de�nition above Un(z) are the Chebyshev polynomials of the second kind. They form a
basis of the polynomial space and when z ∈ [−1, 1] thay can be represented as

Un(z) =
sin((n+ 1) arccos(z))

sin(arccos(z))
. (3.23)

The zk are again the extrema Chebyshev nodes. As for the case above, the DUT-I corresponds
to the evaluation of a polynomial, while the inverse computes the interpolation coe�cients. Using
the following relations between Chebyshev polynomials of the �rst and secon kind:

2Tn(z) = Un(z)− Un−2(z) (3.24)

Un +mmod 2 =
∑

nmod 2=mmod 2
m≤n

2Tm, (3.25)

it can be easily veri�ed that a N -terms DUT-I can be expressed through a N -terms DTT-I as

U(x0, x1, . . . , xN−1) = 2T (y0/2, y1, y2, . . . , yN−1), where (3.26)

yj =
∑

imod 2=jmod 2
i≥j

xi, (3.27)

where the yj above can be computed using two cumulative sums. In the case of the inverse, a
N -terms IDUT-I can be expressed through a N -terms IDTT-I as

U−1(X0, X1, . . . , XN−1) = (2y0 − y2, y1 − y3, y2 − y4, . . . , yN−3 − yN−1, yN−2, yN−1)/2, where
(3.28)

(y0, y1, . . . , yN−1) = T −1(X0, X1, . . . , XN−1). (3.29)

Using both DTT-I and DUT-I combined will be useful later to simplify the computation of the
antiderivative of a polynomial.

Evaluation of the interpolant

We want to evaluate the sum of a polynomial of degree N −1 expressed in terms of the Chebyshev
basis on a set of M generic points zk ∈ [−1, 1],

X = NT (x, z), where Xk =
N−1∑
n=0

xnTn(zk), k = 0, . . . ,M − 1 (3.30)
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If one simply evaluates the sum doing a matrix vector product, this will take O(MN) operations,
in alternative one can reconduct to the non-uniform fast Fourier transform (NUFFT) or to the non-
uniform discrete cosine transform (NUDCT), that allow to get the result in O(max(M,N log(N)))
operations.
Three types of non-uniform transforms can be de�ned [32]: type I where the frequences are non-
uniform, type II where the sample points are non-uniform, type III where both frequences and
sample points are non-uniform. We will consider here NUFFT-II and NUDCT-II.
NUFFT-II is de�ned as

X = NF(x, θ), where Xk =
N−1∑
n=0

xne
−2πinθk , k = 0, . . . ,M − 1 (3.31)

and NUDCT-II is de�ned as

X = NC(x, θ), where Xk =

N−1∑′

n=0

xn cos(πnθk), k = 0, . . . ,M − 1, (3.32)

where the symbol ′ after the sum means that the �rst and last terms are divided by two. We can
express Chebyshev interpolation in terms of NUFFT-II as

NT (x, z) =
N−1∑
n=0

xn cos(n arccos(zk)) = <

(
N−1∑
n=0

xne
−2πinθk

)
= NF(x, θ), (3.33)

where θk = −arccos(zk)

2π
, (3.34)

or in terms of NUDCT-II as follows

NT (x, z) =
N−1∑
n=0

xn cos(n arccos(zk)) =

N−1∑′

n=0

x′n cos(πnθk) = NC(x′, θ), (3.35)

where θk =
arccos(zk)

π
and x′ = (2x0, x1, x2, . . . , xn−2, 2xn−1). (3.36)

The advantage of using the NUDCT instead of the NUFFT is basically to avoid complex arithmetic,
dealing just with the real part, resulting in a better performance. We have implemented the
NUDCT-II following the idea used in [6] to implement the NUFFT-II. We start writing

NC(x, θk) =

N−1∑′

n=0

xn cos(πnθk) =

N−1∑′

n=0

xn cos

(
πn

jk
N − 1

+ πn∆θk

)
, (3.37)

where jk = b(N − 1)θke and ∆θk = θk −
jk

N − 1
, (3.38)

where with be we denote the closest integer, therefore 0 ≤ jk ≤ N − 1 is the integer for which jk
N−1

is closest to θk. We can now apply the addition formula

=

N−1∑′

n=0

xn

[
cos

(
πn

jk
N − 1

)
cos (πn∆θk)− sin

(
πn

jk
N − 1

)
sin (πn∆θk)

]
(3.39)
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and then approximate cos (πn∆θk) and sin (πn∆θk) using the Taylor expansion of cosine and sine

=

N−1∑′

n=0

xn cos

(
πn

jk
N − 1

) R∑
r=0

(−1)r
(πn∆θk)

2r

(2r)!
−

N−1∑′

n=0

xn sin

(
πn

jk
N − 1

) R∑
r=0

(−1)r
(πn∆θk)

2r+1

(2r + 1)!

(3.40)

=
R∑
r=0

[
N−1∑′

n=0

(−1)r
(πn)2r

(2r)!
xn cos

(
πn

jk
N − 1

)]
∆θ2r

k −
R∑
r=0

[
N−1∑′

n=0

(−1)r
(πn)2r+1

(2r + 1)!
xn sin

(
πn

jk
N − 1

)]
∆θ2r+1

k .

(3.41)

If N is big enough (this case however is not relevant for the purposes of this thesis) the term
(π(N − 1))2R+1 might su�er over�ow and be numerically rounded to in�nity and at the same time
the term ∆θ2r+1

k might su�er under�ow and be numerically rounded to 0. Therefore it is a good
practice to divide ∆θ by Θ = maxk |∆θk|. Moreover we note that the �rst and last terms of the
sine sum are zero, therefore

=
R∑
r=0

[
N−1∑′

n=0

(−1)r
(πnΘ)2r

(2r)!
xn cos

(
πn

jk
N − 1

)]
(∆θk/Θ)2r+ (3.42)

R∑
r=0

[
N−2∑
n=1

(−1)r+1 (πnΘ)2r+1

(2r + 1)!
xn sin

(
πn

jk
N − 1

)]
(∆θk/Θ)2r+1. (3.43)

Now we can rewrite everything in terms of DCT-I and DST-I

=
R∑
r=0

Cjk
(
. . . , (−1)r

(πnΘ)2r

(2r)!
xn, . . .

)
(∆θk/Θ)2r+ (3.44)

R∑
r=0

S ′jk

(
. . . , (−1)r+1 (πnΘ)2r+1

(2r + 1)!
xn, . . .

)
(∆θk/Θ)2r+1, (3.45)

where S ′(x) = (0,S(x1, x2, . . . , xN−2), 0), (3.46)

where the input vectors of Cjk and Sjk vary on n, and where with Cjk and Sjk we refer to the jk-th
term of the output vector of C and S respectively. We can put all together in a more compact
form

NC(x, θk) =
S−1∑
s=0

Y s
jk

(∆θk/Θ)s, where (3.47)

Y 0, Y 1, . . . = C(X0),S ′(X1), C(X2),S ′(X3), . . . (3.48)

Xs
n = (−1)d

s
2
e (πnΘ)s

s!
xn n = 0, . . . , N − 1, (3.49)

where �nally S doesn't have to be necessarily even. The computation of the NUDCT-II is then
reduced to the computation of S transforms DCT-I/DST-I (3.48) and of the sum of the series in
(3.47). The truncation error of the Taylor expansions can be estimated as

max
n,k

(
(πn|∆θk|)S

S!

)
≤ (π(N − 1)Θ)S

S!
≤ (π/2)S

S!
. (3.50)



40 CHAPTER 3. NUMERICAL APPROXIMATION METHODS

This means for example that we can get an error smaller than 10−16 if we choose S = 22.
If the number of evaluation points M is much bigger than the number of sample points N , then
the cost of computing (3.47) becomes much bigger then the cost of computing (3.48). In this case
it can be useful to perform some oversampling to reduce computational time. Oversampling means
adding some zeros at the end of the sequence xn so that the grid where cosine and sine transforms
are computed becomes denser. As a consequence the Taylor expansions in (3.40) will be evaluated
on a smaller interval and therefore will require less terms. More in detail if we oversample to
N ′ > N we get

NC(x, θ) =
N−1∑
n=0

xn cos(πnθk) =
N ′−1∑
n=0

xn cos(πnθk), (3.51)

where xN = xN+1 = . . . = xN ′−1 = 0. (3.52)

Then, proceeding as above with N ′ in place of N , we obtain

NC(x, θk) =
S−1∑
s=0

Y s
j′k

(∆θ′k/Θ
′)s, where (3.53)

j′k = b(N ′ − 1)θke, ∆θ′k = θk −
j′k

N ′ − 1
and Θ′ = max

k
|∆θ′k| (3.54)

Y 0, Y 1, . . . = C(X0),S ′(X1), C(X2),S ′(X3), . . . (3.55)

Xs
n = (−1)d

s
2
e (πnΘ′)s

s!
xn n = 0, . . . , N − 1. (3.56)

We can now estimate the truncation error as

max
n,k

(
(πn|∆θ′k|)S

S!

)
≤ (π(N − 1)Θ′)S

S!
≤
(
π
2
N−1
N ′−1

)S
S!

=

(
N − 1

N ′ − 1

)S
(π/2)S

S!
, (3.57)

therefore incereasing the value of N ′ allows to take a smaller value of S. For example we can get
an error smaller than 10−16 if we choose N ′ = 8N and S = 12.

In the derivation above we have used the Taylor expansion to approximate the functions cosine
and sine. Better results can be obtained if we use the Chebyshev expansion, similarly to what has
been done in [64] for the NUFFT. Cosine and sine can be then expressed as

cos(ax) =

∞∑′

r=0

c2r(a)T2r(x) x ∈ [−1, 1] (3.58)

sin(ax) =
∞∑
r=0

c2r+1(a)T2r+1(x) x ∈ [−1, 1], (3.59)

where the coe�cients cr can be computed using the orthogonality of the Chebyshev basis

c2r(a) =
2

π

� 1

−1

cos(ax)T2r(x)√
1− x2

dx = (−1)r2J2r(a) (3.60)

c2r+1(a) =
2

π

� 1

−1

sin(ax)T2r+1(x)√
1− x2

dx = (−1)r2J2r+1(a), (3.61)



3.1. CHEBYSHEV INTERPOLATION 41

where Jα(x) is the Bessel function of the �rst kind. We can truncate the expansion to the �rst R
terms and then express it in terms of the monomial basis

cos(ax) ≈
R∑′

r=0

c2r(a)T2r(x) =
R∑
r=0

d2r(a)x2r (3.62)

sin(ax) ≈
R∑
r=0

c2r+1(a)T2r+1(x) =
R∑
r=0

d2r+1(a)x2r+1 (3.63)

In our case we have ax = πn∆θ′k and we have that a must not depend on n and ∆θ′k to be able to
apply the same procedure used previously, while x must cover all the interval [−1, 1] to maximise
the quality of the approximation. Therefore we have

cos(πn∆θ′k) ≈
R∑
r=0

d2r (π(N − 1)Θ′)

(
n

N − 1

∆θ′

Θ′

)2r

(3.64)

sin(πn∆θ′k) ≈
R∑
r=0

d2+1r (π(N − 1)Θ′)

(
n

N − 1

∆θ′

Θ′

)2r+1

, (3.65)

where
n

N − 1

∆θ′

Θ′
∈ [−1, 1] (3.66)

and following the same steps used above, but using this new approximation, we �nally get

NC(x, θk) =
S−1∑
s=0

Y s
j′k

(∆θ′k/Θ
′)s, where (3.67)

Y 0, Y 1, . . . = C(X0),S ′(X1), C(X2),S ′(X3), . . . (3.68)

Xs
n = ds (π(N − 1)Θ′)

(
n

N − 1

)s
xn n = 0, . . . , N − 1. (3.69)

Using the inequality [21, Eq. 10.14.4] for the Bessel function, the truncation error of the Chebyshev
series can be estimated as

∞∑
s=S

|cs (π(N − 1)Θ′)| = 2
∞∑
s=S

|Js (π(N − 1)Θ′)| ≤ 2
∞∑
s=S

(
π
2
(N − 1)Θ′

)s
s!

(3.70)

= 2

(
π
2
(N − 1)Θ′

)S
S!

∞∑
s=0

(
π
2
(N − 1)Θ′

)s
(S + 1)(s)

≤ 2

(
π
2
(N − 1)Θ′

)S
S!

∞∑
s=0

(
π

2
(N − 1)Θ′

1

S + 1

)s
(3.71)

≤ 2

(
π
2
(N − 1)Θ′

)S
S!

∞∑
s=0

(
1

S + 1

)s
= 2

S + 1

S

(
π
2
(N − 1)Θ′

)S
S!

≤ 2
S + 1

S

(
π
4
N−1
N ′−1

)S
S!

, (3.72)

where m(i) is the rising factorial. Comparing (3.57) and (3.72) we can see that using Chebyshev
approximation basically corresponds to adding a factor 2 of oversampling in the Taylor approxi-
mation. Therefore if we want to get an error smaller than 10−16 using Chebyshev approximation
we must choose S = 17 with no oversampling (N ′ = N) or S = 10 if we choose N ′ = 8N .
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3.2 Integral of a weighted polynomial

In section 3.1 we have seen how to �nd the representation in the Chebyshev bases of �rst and
second kind of the polynomial interpolant on the set of extrema Chebyshev nodes. Here we will
see how to integrate a polynomial pn(x) of degree n multiplied by the Jacobi weight function

F (x) =

�
pn(x)w(x)dx where w(x) = (1− x)α(1 + x)β. (3.73)

We will compute F (x) using the propeties of Chebyshev polynomials, in particular the recurrence
relations

Tn+1 = 2xTn − Tn−1 (3.74)

Un+1 = 2xUn − Un−1, (3.75)

the di�erentiation of Chebyshev polynomials of �rst kind

dTn
dx

(x) = nUn−1(x) (3.76)

and the relations between Chebyshev polynomials of �rst and second kind

Tn(x) = 1/2(Un(x)− Un−2(x)) (3.77)

Un = 2
n∑

oddj

Tj(x) for odd n (3.78)

Un = 2
n∑

evenj

Tj(x)− 1 for even n. (3.79)

This kind of approach has been used several times in the literature for the computation of de�nite
integrals of weighted polynomials, see for example [62].

Asymptotics on one side We want to compute the integral

F (x) =

�
pn(x)w(x)dx, where w(x) = (1− x)α. (3.80)

It is possible to express F (x) as

F (x) = Pn(x)(1− x)α+1 + c, (3.81)

where Pn(x) is a polynomial of degree n and c is an arbitrary constant. Then if we di�erentiate
we get

F ′(x) =
dPn(x)

dx
(1− x)α+1 − Pn(x)(α + 1)(1− x)α (3.82)

=

(
dPn(x)

dx
(1− x)− Pn(x)(α + 1)

)
w(x) (3.83)

= qn(x)w(x), (3.84)
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where qn(x) is a polynomial of degree n. Therefore we need to �nd Pn(x) such that qn(x) = pn(x).
We start writing Pn(x) in terms of the Chebyshev basis of �rst kind and pn(x) in terms of the
Chebyshev basis of second kind

Pn(x) =
n∑
i=0

aiTi(x) and pn(x) =
n∑
i=0

biUi(x). (3.85)

Using the properties of Chebyshev polynomials listed above, it can be seen that

d(Ti(x)(1− x)α+1)

dx
=

(
−α + 1 + i

2
Ui(x) + iUi−1(x) +

α + 1− i
2

Ui−2(x)

)
w(x), i ≥ 2 (3.86)

d(T1(x)(1− x)α+1)

dx
=

(
−α + 2

2
U1(x) + U0(x)

)
w(x) (3.87)

d(T0(x)(1− x)α+1)

dx
= −(α + 1)U0(x)w(x). (3.88)

This means that we have a relation between ai and bi in the form of a linear system
d1,0 d2,0 d3,0

. . . . . . . . .

d1,n−2 d2,n−2 d3,n−2

d1,n−1 d2,n−1

d1,n



a0

a1
...
an

 =


b0

b1
...
bn

 , (3.89)

that has an upper triangular band matrix and can be solved in O(n) operation using back substi-
tution. This method of solution is always stable when α > −1.

When α > −1 we also have that the integral

� x

1

pn(x)w(x)dx = Pn(x)(1− x)α+1 (3.90)

is de�ned and can be computed without loss of accuracy even when x is very close to 1.

Asymptotics on both sides We want to compute the integral

F (x) =

�
pn(x)w(x)dx, where w(x) = (1− x)α(1 + x)β. (3.91)

It is possible to express F (x) as

F (x) = Pn−1(x)(1− x)α+1(1 + x)β+1 + a0g(x), (3.92)

where

g(x) =

�
T0(x)w(x)dx =

�
w(x)dx (3.93)
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and Pn−1(x) is a polynomial of degree n− 1. Then if we di�erentiate we get

F ′(x) =
dPn−1(x)

dx
(1− x)α+1(1 + x)β+1− (3.94)

Pn−1(x)
(
(α + 1)(1− x)α(1 + x)β+1 − (β + 1)(1− x)α+1(1 + x)β

)
+ a0g

′(x) (3.95)

=

(
dPn−1(x)

dx
(1− x)(1 + x)− Pn−1(x)((α + 1)(1 + x)− (β + 1)(1− x)) + a0

)
w(x) (3.96)

=qn(x)w(x), (3.97)

where qn(x) is a polynomial of degree n. Therefore we need to �nd Pn−1(x) and a0 such that
qn(x) = pn(x). We start writing Pn−1(x) and pn(x) in terms of the Chebyshev basis of �rst kind

Pn−1(x) =
n∑
i=1

aiTi−1(x) and pn(x) =
n∑
i=0

biTi(x). (3.98)

Using the properties listed above it can be seen that

d(Ti(x)(1− x)α+1(1 + x)β+1)

dx
= (3.99)(

−α + β + 2 + i

2
Ti+1(x)− (α− β)Ti(x) +

α + β + 2− i
2

Ti−1(x)

)
w(x), i ≥ 2 (3.100)

d(T1(x)(1− x)α+1(1 + x)β+1)

dx
=

(
−α + β + 3

2
T2(x)− (α− β)T1(x)− α + β + 1

2
T0(x)

)
w(x)

(3.101)

d(T0(x)(1− x)α+1(1 + x)β+1)

dx
= (−(α + β + 2)T1(x)− (α− β)T0(x))w(x) (3.102)

with in addition

dg(x)

dx
= T0(x)w(x) (3.103)

This means that we have a relation between ai and bi in the form of a linear system
d1,0 d2,0 d3,0

. . . . . . . . .

d1,n−2 d2,n−2 d3,n−2

d1,n−1 d2,n−1

d1,n



a0

a1
...
an

 =


b0

b1
...
bn

 , (3.104)

that has an upper triangular band matrix and can be solved in O(n) operation using back substi-
tution. When α > −1 and β > −1 the function g(x) can be expressed in terms of the incomplete
beta function as

g(x) = −2α+β+1B 1−x
2

(α + 1, β + 1) + c, (3.105)

where c is an arbitrary constant. This method of solution is always stable when α > −1 and
β > −1. It can be also used to solve the case of the asymptotic on one side setting β = 0.

When α > −1 and β > −1 we also have that the integral� x

1

pn(x)w(x)dx = Pn−1(x)(1− x)α+1(1 + x)β+1 − a02α+β+1B 1−x
2

(α + 1, β + 1) (3.106)

is de�ned and can be computed without loss of accuracy even when x is very close to 1.
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3.3 Approximation

We have seen how to compute the Chebyshev interpolant in an e�cient way and how to evaluate
it at arbitrary points. However, if the function that we want to approximate is not smooth at the
endpoints (see the beginning of section 3.1), Chebyshev interpolation is not that e�ective. Even
worse, if the function is singular at the endpoints, Chebyshev approximation cannot be directly
applied at all. To address the problem we can proceed as follows.

Reformulation

Instead of approximating the function directly, we will apply a change of variable to smooth the
function at the boundary and then put the leading asymptotic term into a weight function.

Asymptotics on one side Let us consider a function f that is smooth inside the interval [−1, 1],
but has the following asymptotic behaviour on the right side

f(x) = a0(1− x)α + a1(1− x)α+1 + a2(1− x)α+2 + . . . x→ 1, (3.107)

then we can de�ne g as

g(x) =
f(x)

w(x)
, where (3.108)

w(x) = (1− x)α, (3.109)

so f(x) = g(x)w(x) and the asymptotic behaviour of g is

g(x) = a0(1− x)0 + a1(1− x)1 + a2(1− x)2 + . . . x→ 1, (3.110)

therefore g is C∞ also at the right endpoint. If instead f behaves like

f(x) = a0(1− x)α + a1(1− x)α+1d + a2(1− x)α+2d + . . . x→ 1, (3.111)

then we can de�ne g as

g(y) =
f(s(y))

w(y)
, where (3.112)

s(y) = 1− 2

(
1− y

2

) 1
d

(3.113)

w(y) = (1− y)
α
d , (3.114)

so f(x) = g(s−1(x))w(s−1(x)) and the asymptotic behaviour of g is

(3.115)

g(y) = â0(1− y)0 + â1(1− y)1 + â2(1− y)2 + . . . y → 1, (3.116)

therefore g is C∞ also at the right endpoint. More in general if f behaves like

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1 (3.117)
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and we proceed as above with

g(y) =
f(s(y))

w(y)
, where (3.118)

s(y) = 1− 2

(
1− y

2

) m
α1−α0

(3.119)

w(y) = (1− y)
mα0
α1−α0 , (3.120)

then f(x) = g(s−1(x))w(s−1(x)) and the asymptotic behaviour of g is

g(y) = â0(1− y)0 + â1(1− y)m + h.o.t. y → 1, (3.121)

therefore, if m is a positive integer, the function g is at least Cm at the right endpoint. Increasing
m will make g smoother at the boundary but at the same time g will become worse inside the
interval. The value of m can be chosen to get the best compromise depending on the problem.

Asymptotics on both sides Let us consider now a function f that has a bad asymptotic
behaviour at both the endpoints of the interval

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1 (3.122)

f(x) = b0(1 + x)β0 + b1(1 + x)β1 + h.o.t. x→ −1, (3.123)

then we can generalise the case seen above and de�ne g as

g(y) =
f(s(y))

w(y)
, where (3.124)

s(y) = 1− 2

� y
1

(1− t)
ma

α1−α0
−1

(1 + t)
mb

β1−β0
−1
dt� −1

1
(1− t)

ma
α1−α0

−1
(1 + t)

mb
β1−β0

−1
dt

(3.125)

= 1− 2I 1−y
2

(
ma

α1 − α0

,
mb

β1 − β0

)
(3.126)

w(x) = (1− y)
maα0
α1−α0 (1 + y)

mbβ0
β1−β0 , (3.127)

where Ix(a, b) is the regularised incomplete beta function. So f(x) = g(s−1(x))w(s−1(x)) and the
asymptotic behaviour of g is

g(y) = â0(1− y)0 + â1(1− y)1 + . . .+ âma(1− y)ma + h.o.t. y → 1 (3.128)

g(y) = b̂0(1 + y)0 + b̂1(1 + y)1 + . . .+ b̂ma(1 + y)mb + h.o.t. y → −1. (3.129)

Therefore, if ma,mb are positive integers, the function g is at least Cma at the right and Cmb at
the left endpoint. Increasing ma,mb will make g smoother at the boundary but at the same time g
will become worse inside the interval. It can be easily seen that if we take β0 = 0, β1 = 1, mb = 1
we recover the case with the singularity only on one endpoint.
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Approximation

Now that the function g is smoother, we can e�ectively interpolate it with a polynomial pn at the
Chebyshev nodes yi. The interpolation nodes expressed in the original variable become xi = s(yi),
that means that, if α1 − α0 < 1 and β1 − β0 < 1, the nodes are pushed towards the endpoints. As
we increase ma and mb the nodes get even more packed at the sides of the interval.
At the same time, when we approximate g with a polynomial, we are actually approximating f in
the function space

f(x) ≈ f̃(x) := pn(s−1(x))w(s−1(x)), (3.130)

a polynomial pn composed with a smooth change of variables, multiplied by a weight function.
The asymptotic behaviour of f̃ is

f̃(x) = ã0(1− x)α0 + ã1(1− x)α0+1
α1−α0
ma + ã2(1− x)α0+2

α1−α0
ma + . . . x→ 1 (3.131)

f̃(x) = b̃0(1 + x)β0 + b̃1(1 + x)
β0+1

β1−β0
mb + b̃2(1 + x)

β0+2
β1−β0
mb + . . . x→ −1 (3.132)

and as we increase ma and mb the asymptotic terms get closer to each other, the (ma + 1)-th and
(mb + 1)-th having exponent α1 and β1 respectively.
The �nal e�ect of the change of variable is therefore to put more nodes close to the interval
endpoints and at the same time more asymptotic terms close to the leading ones, in the attempt
of better capturing the behaviour of f at the endpoints.

Remarks

The use of the incomplete beta function as a smoothing transformation, can be found for example in
[49], where it has been used to perform de�nite integrals. The authors considered, along with other
changes of variable, the polynomial case of the beta transformation, that is when the coe�cient a, b
of Ix(a, b) are positive integers. The use of the incomplete beta function with non integer powers
generalises the polynomial case allowing to obtain better results. The beta function, as well as its
inverse, is already implemented in most computational software therefore easy to implement and
fast to compute.

3.4 Integration

We have treated the approximation case above, now we proceed in a similar way for inde�nite
integration and the evaluation of the integral operator.

Inde�nite integration

Reformulation

As done above, we will apply a change of variables and then put the leading asymptotic term into a
weight function. The di�erence this time is that if we apply a change of variables s to the integral
we get

�
f(x)dx =

�
f(s(y))s′(y)dy (3.133)
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and therefore also the derivative of s must be taken into account. We will discuss only the case
with bad asymptotic behaviour on both sides, the one side case can be obtained taking β0 = 0,
β1 = 1, mb = 1.

Asymptotics on both sides If f is de�ned like in (3.122,3.123), then we can de�ne g as

g(y) =
f(s(y))s′(y)

w(y)
, where (3.134)

s(y) = 1− 2I 1−y
2

(
ma

α1 − α0

,
mb

β1 − β0

)
(3.135)

s′(y) =

(
1−y

2

) ma
α1−α0

−1 (1+y
2

) mb
β1−β0

−1

B
(

ma
α1−α0

, mb
β1−β0

) (3.136)

w(y) = (1− y)
ma(α0+1)
α1−α0

−1
(1 + y)

mb(β0+1)

β1−β0
−1
, (3.137)

so
�
f(x)dx =

�
g(y)w(y)dy and the asymptotic behaviour of g is

g(y) = â0(1− y)0 + â1(1− y)1 + . . .+ âma(1− y)ma + h.o.t. y → 1 (3.138)

g(y) = b̂0(1 + y)0 + b̂1(1 + y)1 + . . .+ b̂mb(1 + y)mb + h.o.t. y → −1. (3.139)

Therefore, if ma,mb are positive integers, the function g is at least Cma at the right and Cmb at
the left endpoint.

Approximation

We can now e�ectively approximate g with a polynomial, obtaining�
f(x)dx ≈

�
pn(y)w(y)dy, (3.140)

that is the integral of a polynomial multiplied by the Jacobi weight function. As in the previous
section the polynomial pn can be obtained interpolating the function g(y) at the Chebyshev nodes
yi, that in the original variable become xi = s(yi). We are approximating f in the function space

f(x) ≈ f̃(x) =
pn(s−1(x))w(s−1(x))

s′(s−1(x))
, (3.141)

a polynomial pn composed with a smooth change of variables, multiplied by a weight function.
The asymptotic behaviour of f̃ is like in (3.131) and the choice of ma and mb has the same e�ect
as previously discussed.

Integral operator

We want now to integrate over the interval [−1, 1] a function f that has a bad asymptotic behaviour
at both endpoints of the interval like in (3.122,3.123) and in addition is not smooth (or possibly
weakly singular) in a point x0 ∈ [−1, 1]. In particular we consider the case where

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1 (3.142)

f(x) = b0(1 + x)β0 + b1(1 + x)β1 + h.o.t. x→ −1 (3.143)

f(x) = c0 + c1(x− x0) log(|x− x0|) + h.o.t. x→ x0, (3.144)

but a similar procedure can be used also in di�erent situations.
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Reformulation

We start working at the endpoints with the same smoothing transformation used above, and we
de�ne the function g as

g(y) = f(s(y)), where (3.145)

s(y) = 1− 2I 1−y
2

(
ma

α1 − α0

,
mb

β1 − β0

)
, (3.146)

that has the following asymptotic behaviour

g(y) = â0(1− y)
maα0
α1−α0 + â1(1− y)

maα0
α1−α0

+1
+ . . .+ âma(1− y)

maα0
α1−α0

+ma + h.o.t. y → 1 (3.147)

g(y) = b̂0(1 + y)
mbβ0
β1−β0 + b̂1(1 + y)

mbβ0
β1−β0

+1
+ . . .+ b̂mb(1 + y)

mbβ0
β1−β0

+mb + h.o.t. y → −1 (3.148)

g(y) = c0 + ĉ1(y − y0) log(|y − y0|) + h.o.t. y → y0 = s−1(x0). (3.149)

Now we work on the point y0 with another smoothing transformation h, and we de�ne the function
h as

h(z) = g(t(z)), where (3.150)

t(z) = y0 +

(
(1− y0)

1
mc

(1 + z)

2
− (1 + y0)

1
mc

(1− z)

2

)mc
= (3.151)

= y0 +

(
(1 + y0)

1
mc + (1− y0)

1
mc

2

)mc

(z − z0)mc (3.152)

z0 = t−1(y0) =
(1 + y0)

1
mc − (1− y0)

1
mc

(1 + y0)
1
mc + (1− y0)

1
mc

, (3.153)

where mc is an odd positive integer. Note that being mc an integer the transformation is polyno-
mial. Note also that it is not possible to de�ne a suitable smooth transformation when mc is even.
The asymptotic behaviour of h is

h(z) = ā0(1− z)
maα0
α1−α0 + ā1(1− z)

maα0
α1−α0

+1
+ . . .+ āma(1− z)

maα0
α1−α0

+ma + h.o.t. z → 1 (3.154)

h(z) = b̄0(1 + z)
mbβ0
β1−β0 + b̄1(1 + z)

mbβ0
β1−β0

+1
+ . . .+ b̄mb(1 + z)

mbβ0
β1−β0

+mb + h.o.t. z → −1 (3.155)

h(z) = c0 + c̄mc(z − z0)mc log(|z − z0|) + h.o.t. z → z0 = t−1(s−1(x0)). (3.156)

Finally we consider the integral

� 1

−1

f(x)dx =

� 1

−1

g(y)s′(y)dy =

� 1

−1

h(z)s′(t(z))t′(z)dz =

� 1

−1

k(z)w(z)dz, (3.157)

where k and w are

k(z) =
h(z)s′(t(z))t′(z)

w(z)
(3.158)

w(z) = (1− z)
ma(α0+1)
α1−α0

−1
(1 + z)

mb(β0+1)

β1−β0
−1
. (3.159)
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The asymptotic behaviour of k is

k(z) = â0(1− z)0 + â1(1− z)1 + . . .+ âma(1− z)ma + h.o.t. z → 1 (3.160)

k(z) = b̂0(1 + z)0 + b̂1(1 + z)1 + . . .+ b̂mb(1 + z)mb + h.o.t. z → −1 (3.161)

k(z) = ĉ0(z − z0)mc−1 + ĉ1(z − z0)mc + . . .+ ĉmc(z − z0)2mc−1 log(|z − z0|) + h.o.t. z → z0

(3.162)

and with a suitable choice of ma,mb positive integers and mc odd positive integer, the function k
can be made smooth, at least Cma at the right and Cmb at the left endpoint, and C2mc−2 at z0.

Approximation

We can now e�ectively approximate k with a polynomial, obtaining

� 1

−1

f(x)dx ≈
� 1

−1

pn(z)w(z)dz, (3.163)

the integral of a polynomial multiplied by the Jacobi weight function. Again the polynomial pn
can be obtained interpolating the function k(z) at the Chebyshev nodes zi, that in the original
variable become xi = s(t(zi)). We are approximating f in the function space

f(x) ≈ f̃(x) :=
pn(t−1(s−1(x)))w(t−1(s−1(x)))

s′(s−1(x))t′(t−1(s−1(x)))
, (3.164)

a polynomial pn composed with a smooth change of variables, multiplied by a weight function.
The asymptotic behaviour of f̃ at the boundary is like in (3.131), while at x0 we have

f̃(x) = c̃0(x− x0)−1+ 1
mc + c̃1(x− x0)−1+ 2

mc + c̃2(x− x0)−1+ 3
mc + . . . x→ x0 (3.165)

The choice of ma and mb has the same e�ect as previously discussed. In a similar way, increasing
mc puts more nodes close to x0 and more asymptotic terms with exponent smaller than 1, with
the 2mc-th having exponent 1;

Remarks

The use of the polynomial transformation (3.152) can be found for example in [50] to evaluate an
integral operator, and other similar transformation can be found in literature.
We would also like to point out that in our case the most natural choice for a transformation that
does simultaneously the job of s and t, would be the transformation u de�ned as

u(z) = 1− 2

� z
1

(1− t)
ma

α1−α0
−1

(t− z0)mc−1(1 + t)
mb

β1−β0
−1
dt� −1

1
(1− t)

ma
α1−α0

−1
(t− z0)mc−1(1 + t)

mb
β1−β0

−1
dt
, (3.166)

where u(z0) = x0. (3.167)

Indeed by de�nition u(1) = 1, u(−1) = −1, u′(z) > 0 (mc − 1 is an even positive integer) and
u behaves like s (3.126) at the boundaries and like t (3.152) in z0. However for simplicity of
implementation we chose to use s and t combined, the main problem of u being the computation
of z0.
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3.5 Numerical remarks

Numerical problems can arise in the implementation of the formulas de�ned in the previous sec-
tions. Indeed we have seen that applying the changes of variables (3.126,3.135,3.146) we cluster
the nodes at the interval endpoints to mitigate the bad asymptotic behaviour of the functions
that we want to approximate. But as the nodes get closer to the endpoints, the potential loss of
information due to �nite precision arithmetic increases. For example consider the function

f(x) = 1 + (1− x)
1
6 (3.168)

and the change of variable s to make it regular

s(y) = 1− 2

(
1− y

2

)6

. (3.169)

Indeed applying s to f we obtain the function g

g(y) := f(s(y)) = 1 + 2−
5
6 (1− y), (3.170)

that is C∞. Let us take now 25 Chebyshev nodes

yj = − cos

(
πj

24

)
, j = 0, . . . , 24, (3.171)

if we consider the last but one node y23 and we compute it using double precision arithmetic,
then we get y23 ≈ 0.992114701314478 and after the change of variable x23 ≈ 0.999999999999993.
Now if we want to evaluate the function f(x) on this node and we do it using (3.168) we get
f(x23) ≈ 1.004429144579495, while instead if we use (3.170) we have g(y23) ≈ 1.004425474257041.
With the �rst formulation we have lost 10 digits! This is �rst due to cancellation error when we
compute 1 − x, and then further ampli�ed when raising to the power 1

6
because the derivative of

z
1
6 goes to in�nity when z goes to 0. The situation gets worse as the number of Chebyshev nodes

increases and as the exponent of the change of variables gets bigger (in practical cases it can be
greater than 10).

To overcome this problem, instead of using the variables x and y, we will work with the cou-
ple of variables y1 := 1− y and y−1 := 1 + y and the corresponding x1 := 1− x and x−1 := 1 + x.
Where necessary, we will reformulate the expressions in a way to avoid numerical error close to
the interval endpoints and to do so we will tend to use x1 and y1 when x and y are close to 1 and
x−1 and y−1 when x and y are close to -1. Therefore the Chebyshev nodes can be expressed as

y1,j = 1− yj = 2 sin

(
πj

2(n− 1)

)2

, j = 0, . . . , n− 1 (3.172)

y−1,j = 1 + yj = 2 sin

(
π(n− 1− j)

2(n− 1)

)2

, j = 0, . . . , n− 1, (3.173)

the transformation x = s(y) in (3.126,3.135,3.146) can be expressed as

x1 = 1− s(y) = 2I y1
2

(
ma

α1 − α0

,
mb

β1 − β0

)
(3.174)

x−1 = 1 + s(y) = 2− 2I 1−y
2

(
ma

α1 − α0

,
mb

β1 − β0

)
= 2I y−1

2

(
mb

β1 − β0

,
ma

α1 − α0

)
, (3.175)
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the weight function w(x) in (3.127) can be expressed as

w(x) = (1− x)α0(1 + x)β0 = xα0
1 x

β0
−1 (3.176)

and similarly for w(y) in (3.137) and w(z) in (3.151). The transformation y = t(z) in (3.152), that
is a polynomial because mc is an odd positive integer, can be reformulated as

y1 = 1− t(z) = −
mc∑
n=1

(
mc

n

)
y
mc−n
mc

0,1

−
(
y

1
mc
0,1 + y

1
mc
0,−1

)
z1

2


n

(3.177)

y−1 = 1 + t(z) = −
mc∑
n=1

(
mc

n

)
y
mc−n
mc

0,−1

−
(
y

1
mc
0,1 + y

1
mc
0,−1

)
z−1

2


n

(3.178)

and in a similar way also its derivative t′(z). The function g(x) in (3.105) can be expressed as

g(x) = −2α+β+1Bx1
2

(α + 1, β + 1) + c. (3.179)

In general it might be necessary to apply the same kind of procedure when we evaluate any function,
if we see the possibility that some numerical error can arise. For example in the case seen above
(3.168) if we write

f(x) = 1 + (1− x)
1
6 = 1 + x

1
6
1 , (3.180)

then the accuracy of the computations is preserved.

3.6 Changing interval

In sections 3.3 and 3.4 we have described some numerical methods to approximate and integrate
functions in [−1, 1], the standard interval for approximation theory. Our HF problem instead is
de�ned in [0, 1], therefore to use the previous results it will be necessary to rescale the interval.
This is done using the simple linear transformation x̄ = (x + 1)/2, where in x ∈ [−1, 1] and
x̄ ∈ [0, 1].

Approximation

Consider a function f̄(x̄) in [0, 1] that behaves like

f̄(x̄) = ā0(1− x̄)α0 + ā1(1− x̄)α1 + h.o.t. x̄→ 1 (3.181)

f̄(x̄) = b̄0x̄
β0 + b̄1x̄

β1 + h.o.t. x̄→ 0, (3.182)

then the function f(x) := f̄((x+ 1)/2) in [−1, 1] behaves like

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1 (3.183)

f(x) = b0(1 + x)β0 + b1(1 + x)β1 + h.o.t. x→ −1, (3.184)

where the asymptotic coe�cients have changed but the exponents have remained the same. We
can now apply the results from section 3.3 to approximate f(x).
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Integration

Consider the same function f̄ and f as above, integrating it and passing to [−1, 1] we get that

�
f̄(x̄)dx̄ =

1

2

�
f(x)dx and

� x

0

f̄(x̄)dx̄ =
1

2

� x

−1

f(x)dx. (3.185)

We can now apply the results from section 3.4 to integrate f(x).

Integral operator

Consider a function f̄(x̄) that behaves like

f̄(x̄) = ā0(1− x̄)α0 + ā1(1− x̄)α1 + h.o.t. x̄→ 1 (3.186)

f̄(x̄) = b̄0x̄
β0 + b̄1x̄

β1 + h.o.t. x̄→ 0 (3.187)

f̄(x̄) = c0 + c̄1(x̄− x̄0) log(|x̄− x̄0|) + h.o.t. x̄→ x̄0, (3.188)

then the function f(x) := f̄((x+ 1)/2) in [−1, 1] behaves like

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1 (3.189)

f(x) = b0(1 + x)β0 + b1(1 + x)β1 + h.o.t. x→ −1 (3.190)

f(x) = c0 + c1(x− x0) log(|x− x0|) + h.o.t. x→ x0, (3.191)

where the asymptotic coe�cients have changed but the exponents and logarithm have remained
the same. Integrating it and passing to [−1, 1] we have that

� 1

0

f̄(x̄)dx̄ =
1

2

� 1

−1

f(x)dx (3.192)

and we can again apply the results from section 3.4 to integrate f(x).

Remarks

To perform approximation and integration in sections 3.3 and 3.4, we needed to have the values
of f(x) on the nodes xi = s(yi) in the case of approximation and integration and on the nodes
xi = s(t(zi))) in the case of the integral operator, where yi and zi are the Chebyshev nodes on
[−1, 1]. Therefore when passing to [0, 1] we will need the values of f̄(x̄) on the corresponding nodes
x̄i = (xi + 1)/2.
We have also seen that in the interval [−1, 1] we needed to use the couple of variables x1 := 1− x
and x−1 := 1 + x in place of x, to avoid numerical problems when nodes cluster at the endpoints
of [−1, 1]. Similarly, in the interval [0, 1], we will need to use x̄0 := x̄ and x̄1 := 1 − x̄ for the
same reason. When passing from one interval to the other we get the relations x̄0 = x−1/2 and
x̄1 = x1/2

3.7 Computation of the kernel

In our implementation we need to have the kernels of the integral operators computed with a small
relative error at any point. If we use the formulations provided above (2.86,2.90,2.141,2.145), the
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absolute error can be kept small, but when the value of the kernel approaches zero, the relative
error can get arbitrarily large because of numerical cancelation.
In the case of the KGD model, to get a small relative error, the kernel can be for example reformu-
lated in terms of simple functions in some di�erent ways that have di�erent numerical behaviours.
Each formulation works well for a speci�c set of points but not for all the domain. For most of the
points, the relative error can be maintained small choosing the appropriate formulation, but for
some other points it is necessary to use series expansions cancelling the leading asymptotic terms.
The same approach can be attempted also for radial but it turns out to be more challenging.
We propose instead to proceed in a di�erent way, where we express both KGD and radial kernels
in terms of symmetric elliptic integrals, that can be directly computed using a fast and accurate
algorithm.

Elliptic integrals

We recall here some de�nitions and some identities related to elliptic integrals.
Incomplete elliptic integrals of �rst and second kind:

F (φ|m) =

� φ

0

dθ√
1−m sin2 θ

, E(φ|m) =

� φ

0

√
1−m sin2 θdθ (3.193)

and associate incomplete elliptic integrals of �rst and second kind [23, 24]:

B(φ|m) =

� φ

0

cos2 θdθ√
1−m sin2 θ

, D(φ|m) =

� φ

0

sin2 θdθ√
1−m sin2 θ

, (3.194)

that are related together by the following equations:

F (φ|m) = B(φ|m) +D(φ|m), E(φ|m) = B(φ|m) + (1−m)D(φ|m). (3.195)

Incomplete elliptic integral of third kind:

Π(φ, n|m) =

� φ

0

dθ

(1− n sin2 θ)
√

1−m sin2 θ
(3.196)

and associate incomplete elliptic integral of third kind [25]:

J(φ, n|m) =

� φ

0

sin2 θdθ

(1− n sin2 θ)
√

1−m sin2 θ
, (3.197)

that are related together by the following equations:

J(φ, n|m) =
Π(φ, n|m) + F (φ,m)

n
. (3.198)

Symmetric elliptic integrals [12]:

RF (x, y, z) = 1
2

� ∞
0

dt√
(t+ x)(t+ y)(t+ z)

, RC(x, y) = RF (x, y, y) (3.199)

RJ(x, y, z, p) = 3
2

� ∞
0

dt

(t+ p)
√

(t+ x)(t+ y)(t+ z)
, RD(x, y, z) = RJ(x, y, z, z). (3.200)
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The incomplete elliptic integrals can be expressed in terms of the symmetric elliptic integrals

F (φ|m) = sinφRF

(
cos2 φ, 1−m2 sin2 φ, 1

)
(3.201)

D(φ|m) = 1
3

sin3 φRD

(
cos2 φ, 1−m2 sin2 φ, 1

)
(3.202)

J(φ, n|m) = 1
3

sin3 φRJ

(
cos2 φ, 1−m2 sin2 φ, 1, 1− n sin2 φ

)
(3.203)

and the expressions for E(φ|m), B(φ|m),Π(φ, n|m) can be derived by combining these equations
with the equations above.
Symmetric elliptic integrals can be computed using the fast and accurate algorithm proposed by
Carlson [12, 13, 14].

KGD

The kernel of the integral operator that relates the crack width to the pressure (2.86) can be
expressed in di�erent formulations (see Appendix A.2):

J (x, s) =
1

2
ln

∣∣∣∣√1− x2 +
√

1− s2

√
1− x2 −

√
1− s2

∣∣∣∣ (3.204)

=



artanh

(√
1− x2

1− s2

)
, s < x

artanh

(√
1− s2

1− x2

)
, s > x

(3.205)

=



F

(
arcsin

(√
1− x2

1− s2

)∣∣∣∣1
)
, s < x

F

(
arcsin

(√
1− s2

1− x2

)∣∣∣∣1
)
, s > x

(3.206)

=



√
x(1− x2)

x2 − s2
RC

(
x(1− s2)

x2 − s2
, x

)
, s < x

√
s(1− s2)

s2 − x2
RC

(
s(1− x2)

s2 − x2
, s

)
, s > x.

(3.207)

Not all these formulations are numerically stable at all points of the domain, we now give an idea
of the underlying di�culties.
The �rst formulation (3.204) has numerical problems when x ≈ 1 or when s ≈ 1, because in this
case the argument in input to the logarithm is close to 1. The problem arises because computing
ln(z) when z is close to 1 greatly ampli�es the relative error. Indeed if we take z̄ close to z close
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to 1 we have that ∣∣∣∣ ln(z̃)− ln(z)

z̃ − z

∣∣∣∣ ≈ | ln′(1)| = 1 and

∣∣∣∣ ln(z)

z

∣∣∣∣ ≈ ∣∣∣∣ ln(1)

1

∣∣∣∣ = 0 (3.208)

and as a consequence ∣∣∣∣ ln(z̃)− ln(z)

z̃ − z

∣∣∣∣� ∣∣∣∣ ln(z)

z

∣∣∣∣ . (3.209)

Rearranging the terms we get ∣∣∣∣ ln(z̄)− ln(z)

ln(z)

∣∣∣∣� ∣∣∣∣ z̄ − zz
∣∣∣∣ , (3.210)

that means that in this case the relative error of the logarithm is much greater than the error of
the input.
The second formulation (3.205) has again numerical problems for a similar reason when x ≈ s,
that means that the argument in input to the inverse hyperbolic tangent is close to 1. Indeed if
we take z̄ close to z close to 1 we have that∣∣∣∣artanh(z̃)− artanh(z)

z̃ − z

∣∣∣∣ ≈ | artanh′(z)| ∼ 1

1− z
and

∣∣∣∣artanh(z)

z

∣∣∣∣ ∼ ln(1− z) (3.211)

and as a consequence ∣∣∣∣artanh(z̃)− artanh(z)

z̃ − z

∣∣∣∣� ∣∣∣∣artanh(z)

z

∣∣∣∣ . (3.212)

Rearranging the terms we get ∣∣∣∣artanh(z̃)− artanh(z)

artanh(z)

∣∣∣∣� ∣∣∣∣ z̃ − zz
∣∣∣∣ , (3.213)

that means that in this case the relative error of the inverse hyperbolic tangent is much greater
than the error of the input.
Again for the third formulation (3.206) there are similar numerical problems when x ∼ s, that
means that the argument in input to the elliptic integral tends to π/2. Indeed if we take z̄ close
to z close to π/2 we have that∣∣∣∣F (z̃|1)− F (z|1)

z̃ − z

∣∣∣∣ ≈ ∣∣∣∣∂F (z|1)

∂z

∣∣∣∣ ∼ 1
π
2
− z

and

∣∣∣∣F (z|1)

z

∣∣∣∣ ∼ ln
(π

2
− z
)

(3.214)

and as a consequence ∣∣∣∣F (z̃|1)− F (z|1)

z̃ − z

∣∣∣∣� ∣∣∣∣F (z|1)

z

∣∣∣∣ . (3.215)

Rearranging the terms we get ∣∣∣∣F (z̃|1)− F (z|1)

F (z|1)

∣∣∣∣� ∣∣∣∣ z̃ − zz
∣∣∣∣ , (3.216)
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that means that in this case the relative error of the incomplete elliptic integral of the �rst kind is
much greater than the error of the input.
The last formulation instead does not have numerical problems, provided that 1− s2, 1− x2, x2 −
s2, s2− x2 are computed accurately. Note also that the last formulation has been obtained thanks
to the homogeneity of the symmetric elliptic integrals [21, Eq. 19.20.1.2,19.20.6.2] and it has been
chosen in a way that minimises to chance of over�ow.

Similarly the kernel of the integral operator that relates the crack width to the derivative of
the pressure (2.90) can be expressed as (see Appendix A.2):

K(x, s) =
x− s

2
ln

∣∣∣∣√1− x2 +
√

1− s2

√
1− x2 −

√
1− s2

∣∣∣∣− x

2
ln

(
1 + xs+

√
1− x2

√
1− s2

1 + xs−
√

1− x2
√

1− s2

)
(3.217)

=



x artanh

(
s

x

√
1− x2

1− s2

)
− s artanh

(√
1− x2

1− s2

)
, s < x

x artanh

(
x

s

√
1− s2

1− x2

)
− s artanh

(√
1− s2

1− x2

)
, s > x

(3.218)

= s



s2 − x2

x2
J

(
arcsin

(√
1− x2

1− s2

)
,
s2

x2

∣∣∣∣1
)
, s < x

x2 − s2

s2
Π

(
arcsin

(√
1− s2

1− x2

)
,
x2

s2

∣∣∣∣1
)
, s > x

(3.219)

= −



1

3

s(1− x2)
3
2√

x(x2 − s2)
RJ

(
x(1− s2)

x2 − s2
, x, x,

1

x

)
, s < x

√
(1− s2)(s2 − x2)

s
×[

RC

(
s(1− x2)

s2 − x2
, s

)
+

1

3

x2(1− s2)

s(s2 − x2)
RJ

(
s(1− x2)

s2 − x2
, s, s,

1

s

)]
, s > x.

(3.220)

For similar reasons to the case discussed above, the �rst three formulations have numerical problems
but the last one does not and is written in a form that is less sensitive to over�ow, provided that
1− s2, 1− x2, x2 − s2, s2 − x2 are computed accurately.
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Radial

The kernel of the integral operator that relates the crack width to the pressure (2.141) can be
expressed in di�erent formulations:

J (r, s) =



F

(
arcsin

(√
1− r2

1− s2

)∣∣∣∣s2

r2

)
s

r
, s < r

F

(
arcsin

(√
1− s2

1− r2

)∣∣∣∣r2

s2

)
, s > r

(3.221)

=



√
r(1− r2)

r2 − s2
RF

(
r(1− s2)

r2 − s2
, r,

1

r

)
s

r
, s < x

√
s(1− s2)

s2 − r2
RC

(
s(1− r2)

s2 − r2
, s,

1

s

)
, s > x.

(3.222)

As for KGD the last formulation is written in a form that is less sensitive to over�ow and it is
numerically stable provided that 1− s2, 1− r2, r2 − s2, s2 − r2 are computed accurately.

Similarly the kernel of the integral operator that relates the crack width to the derivative of
the pressure (2.145) can be expressed as (see Appendix A.2):

K(r, s) =s



[
E

(
arcsin (s)

∣∣∣∣r2

s2

)
− E

(
arcsin

(s
r

) ∣∣∣∣r2

s2

)]
=

[
B

(
arcsin (r)

∣∣∣∣s2

r2

)
−B

(
s2

r2

)]
s

r
, s < r

[
E

(
arcsin (s)

∣∣∣∣r2

s2

)
− E

(
r2

s2

)]
, s > r

(3.223)

=− s


r√

r2 − s2
D

(
arcsin(

√
1− r2)

∣∣∣∣ s2

s2 − r2

)
s

r
, s < r

√
s2 − r2

s
E

(
arcsin(

√
1− s2)

∣∣∣∣ r2

r2 − s2

)
, s > r

(3.224)

=−



1

3

s(1− r2)
3
2√

r(r2 − s2)
RD

(
r(1− s2)

r2 − s2
, r,

1

r

)
s

r
, s < r

√
(1− s2)(s2 − r2)

s
×[

RF

(
s(1− r2)

s2 − r2
, s,

1

s

)
+

1

3

r2(1− s2)

s(ss − r2)
RD

(
s(1− r2)

s2 − r2
, s,

1

s

)]
, s > r.

(3.225)

As for KGD the last formulation is written in a form that is less sensitive to over�ow and it is
numerically stable provided that 1− s2, 1− r2, r2 − s2, s2 − r2 are computed accurately.



Chapter 4

Solver for the self-similar problem

We have seen in chapter 3 how to approximate and integrate functions with non smooth behaviour
at the boundaries and possibly also inside the interval. Using these results we will see how to
discretise and solve the self-similar problem. First we will describe an algorithm that follows the
idea proposed in [56, 61, 80], that consists in the use of two nested �xed point iterations to solve
the non linear system arising from the discretisation. Then we will describe another algorithm
based instead on Newton's method. Finally we will verify our results against some benchmarks
already present in literature and study the quality and convergence of our numerical solutions.

4.1 General formulation

The method we will use to solve all three PKN, KGD and radial models is essentially the same,
therefore it is useful to state the equations of the problem in a general way. Then we will just have
to describe the solver for the general formulation and it will be valid for all the models.
� elasticity equation:

w(x) = E(∂p/∂x, L), where (4.1)

E(∂p/∂x, L) =


� x

1

∂p(x)

∂x
dx if PKN

L
� 1

0

∂p(s)

∂s
K(x, s)ds+KIC

√
L
√

1− x2 if KGD, radial,
(4.2)

the kernel of the integral operator depends on the model.
� fracture propagation

KIC = T (p, L), where (4.3)

T (p, L) =


√
L
� 1

0

p(s)√
1− s2

ds if KGD

√
L
� 1

0

p(s)s√
1− s2

ds if radial,
(4.4)

it is only present for KGD and radial models.
� continuity equation

q(x) = C(w,L), where (4.5)

C(w,L) =

{
Lρw(x)x+ L(γ + ρ)

� 1

x
w(x)dx if PKN, KGD(

Lρw(x)x2 + L(γ + 2ρ)
� 1

x
w(x)xdx

)
/x if radial,

(4.6)
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this formulation can be derived integrating continuity equation in the di�erential form.
� �uid balance equation

L = B(w, q∗), where (4.7)

B(w, q∗) =


q∗

(γ + ρ)
� 1

0
w(x)dx

if PKN, KGD√
q∗

(γ + 2ρ)
� 1

0
w(x)xdx

if radial,
(4.8)

this formulation can be derived evaluating (4.6) at the crack mouth and equating it to the boundary
condition on the �uid input.
� �uid �ow equation

∂p

∂x
= F(q, w, L), where (4.9)

F(q, w, L) = −L qn

w2n+1
, (4.10)

the same for all models.
In the next section we will see how to discretise the problem and from now on, when we will refer
to the operators just de�ned, we will mean their discretised version.

4.2 Discretisation

We will see here how we can use the methods described in chapter 3 to approximate and integrate
the variables of the self-similar problem and to evaluate the integral operators. This depends on
the asymptotic behaviour of the solution, that di�ers among the models, therefore we will pass
through all of them one by one.

PKN

Approximation and integration

In the PKN model with no leak-o�, we know from asymptotic analysis in section 2.2, that every
function of the problem has the following asymptotic behaviour

f(x) = a0(1− x)α0 + a1(1− x)α1 + a2(1− x)α2 + . . . x→ 1, (4.11)

where αi = α0 + i i = 1, 2, . . . (4.12)

f(x) = b0x
β0 + b1x

β1 + b2x
β2 + . . . x→ 0, (4.13)

where βi = i i = 0, 1, 2, . . . (4.14)

and the coe�cients ai, bi, α0 depend on the function and on the input parameters.
We can then approximate or integrate every function of the problem proceeding as seen in section
3.6 and then back to 3.3 and 3.4. The process is based on the changes of variable s (3.126)
and (3.135), which we can choose to be the same for all the functions. Indeed they depend on
α1 − α0 = β1 − β0 = 1 that is the same for all the functions and on the parameters ma, mb, that
can be taken both equal to 1. There is in fact no need to increase ma, mb because g in (3.124) and
(3.134) is already C∞. The interpolation nodes are also provided in section 3.6 and they depend
on the aforementioned changes of variable s. Since the changes of variable are always the same for
all the functions, the same is true also for the nodes.
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KGD

In the KGD model with no leak-o�, we know from asymptotic analysis in section 2.3, that the
asymptotic behaviour of the functions at the crack tip is di�erent whenKIC = 0 and whenKIC > 0.
Indeed we recall that the asymptotic behaviour of the crack opening is:

if KIC = 0, w(x) = w1,0(1− x)
2

n+2 + h.o.t. x→ 1, (4.15)

if KIC > 0, w(x) = w1,0(1− x)
1
2 + w1,1(1− x)

3−n
2 log[n=0](1− x) + h.o.t. x→ 1. (4.16)

As a consequence if one tried to directly approximate the variable as done for PKN model, it would
be necessary to change discretisation in each case and in addition further problems would arise
when KIC is very small. Let us see more in detail.
In the case KIC > 0 the leading asymptotic coe�cient depends only on the toughness term of
elasticity equation, indeed it can be seen from [61] that w1,0 = KIC

√
2L and that w1,0 and w1,1

are inversely proportional. Therefore when KIC is close to 0 then w1,0 is also close to 0 and as a
consequence w1,1 grows to in�nity. This corresponds to the fact that the leading asymptotic term
of the limiting case KIC = 0 stays between the �rst and second term of the case KIC > 0, that is
1
2
< 2

n+2
< 3−n

2
when 0 ≤ n < 2. Indeed when KIC is close to 0 the solution is trying to mimic the

di�erent asymptotic of the limiting case, the leading term goes to zero while the second term goes
to in�nity.
Similarly also the derivative of the pressure ∂p

∂x
(x) has di�erent asymptotic behaviour whenKIC = 0

and when KIC > 0:

if KIC = 0,
∂p

∂x
(x) = dp1,0(1− x)

2
n+2
−2 + h.o.t. x→ 1, (4.17)

if KIC > 0,
∂p

∂x
(x) = dp1,0(1− x)

3−n
2
−2 + h.o.t. x→ 1. (4.18)

In the case KIC > 0 we have from [61] that dp1,0 is directly proportional to w1,1, therefore when
KIC is close to 0 then dp1,0 grows to in�nity. This makes again impossible to use the approach of
PKN model in the case of small toughness.
To address this problem we must keep into account at the same time the asymptotics of both cases
KIC = 0 and KIC > 0. In this way we will be able to tackle both cases with the same approach
and also to solve the problem of small toughness. To do so, for the crack opening w(x) we will
consider the following more general asymptotic behaviour

w(x) = w1,0(1− x)
1
2 + w1,1(1− x)

2
n+2 + h.o.t. x→ 1 (4.19)

and the same for the �uid �ow q(x), that has the same characteristics. The situation with the
derivative of the pressure is instead di�erent, because this time the leading term of the caseKIC = 0
is stronger than the leading term of KIC > 0. Therefore it turns out that the best thing to do for
∂p
∂x

(x), is to add a �ctitious leading term and consider the more general asymptotic behaviour

∂p

∂x
(x) = dp1,0(1− x)−

3
2 + dp1,1(1− x)

2
n+2
−2 + h.o.t. x→ 1, (4.20)

where dp1,0 is set to 0. One advantage of such choice is that in this case the distance between the
�rst and second term is again 2

n+2
− 1

2
, the same as for w(x) and q(x) and as a consequence the

change of variable s and the interpolation nodes are the same as for the other functions. Another
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advantage of adding the extra term −3
2
is that when we apply the procedure in section 3.6, then

the functions g in (3.124) and (3.134) become more regular and therefore easier to approximate.
On the other hand the drawback is that the approximation of ∂p

∂x
(x) becomes inaccurate right close

to the crack tip because we are not imposing the right asymptotic behaviour. Anyway this does
not a�ect the overall quality of the solution of the self-similar problem on the rest of the interval.
Finally the same idea can be applied to the pressure p(x), for which we will consider the following
asymptotic behaviour

p(x) = p1,0(1− x)−
1
2 + p1,1(1− x)

2
n+2
−1 + h.o.t. x→ 1, (4.21)

where p1,0 is set to 0. In the case of p we have the same advantages and drawbacks that we have
seen for ∂p

∂x
(x).

Passing to the crack mouth we note that also there the functions are not C∞, indeed it can
be seen from asymptotic analysis in section 2.3 that the third term of the crack opening w(x)
contains a logarithm

w(x) = w0,0 + w0,1x+ w0,2x
2 log(x) + h.o.t. x→ 0, (4.22)

where in this case w0,1 = 0. The presence of the logarithm is also propagated to the other functions
and for this reason it will be useful to increase the regularity at 0 during approximation, with a
suitable choice of the parameters in the changes of variable.

Approximation and integration

After the previous discussion, for every function of the KGD self-similar problem, we will consider
the following asymptotic behaviour

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1, (4.23)

where α1 = α0 +
2

n+ 2
− 1

2
(4.24)

f(x) = b0x
β0 + b1x

β1 + h.o.t. x→ 0, (4.25)

where β0 = 0, β1 = 1 (4.26)

and the coe�cients ai, bi, α0 depend on the function and on the input parameters. In particular
we take α0 = 1/2 for w(x) and q(x), α0 = −3/2 for ∂p

∂x
(x), α0 = −1/2 for p(x) and α0 = −1 for

p(x)√
1−x2 . Note that, as said previously, in the cases of ∂p

∂x
(x), p(x) and p(x)√

1−x2 the term a0 must be
set to 0.
Now we can proceed as we have done for PKN and approximate or integrate every function of the
problem proceeding as seen in section 3.6 and then back to 3.3 and 3.4. For all the functions we
have that α1 − α0 = 2

n+2
− 1

2
, β1 − β0 = 1 and we can take the parameters ma, mb equal to 2, to

increase the regularity of g (3.124) and (3.134) near 0 and 1. For this reason the changes of variable
s (3.126) and (3.135) are the same for all the functions and as a consequence the interpolation
nodes are the same as well.
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Integral operator

Having seen how to approximate and integrate the functions, now we will see how to evaluate the
integral operator

� 1

0
∂p
∂y

(y)K(x, y)dy. In this case we must also take into account the behaviour

of the kernel K(x, y) (see section 2.3), the additional complication comes from the fact that the
kernel is not regular also inside the interval.
Let us see now in detail what to do at the boundaries and inside the interval. When y tends
to 1 we can consider ∂p

∂y
(y) as in (4.20) and simply add the asymptotic behaviour of the kernel.

When y tends to x we have that ∂p
∂y

(y) is smooth and the irregularity comes only from the kernel

K(x, y). When y tends to 0 we can use a stronger asymptotic approximation, that also provides
more regularity. Therefore we can consider the asymptotic behaviour of ∂p

∂y
(y)K(x, y) as

f(x, y) = a0(x)(1− y)α0 + a1(x)(1− y)α1 + h.o.t. y → 1, (4.27)

where α0 = −1, α1 =
2

n+ 2
− 3

2
(4.28)

f(x, y) = b0(x)yβ0 + b1(x)yβ1 + h.o.t. y → 0, (4.29)

where β0 = 0, β1 = 1 (4.30)

f(x, y) = c0 + c1(x)(y − x) log(|y − x|) + h.o.t. y → x (4.31)

and the coe�cients ai, bi, ci depend on the input parameters. The terms a0 and b0 must be set to
0 and we can proceed as seen in section 3.6 and 3.4.
The changes of variable s (3.146) and t (3.152) are de�ned by α1 − α0 = 2

n+2
− 1

2
, β1 − β0 = 1

and by the parameters ma, mb, mc that can be taken equal to 2, 2, 3 respectively, to increase the
regularity of the function k in (3.158). However this time the interpolation nodes on y depend on
the variable x, therefore if we want to evaluate the integral operator on the set of nodes xi, we
need to evaluate the derivative of the pressure and the kernel on the corresponding set of nodes
yi,j, that is a di�erent set of nodes for every xi.

We have seen in section 3.7 that to have an accurate computation of the kernel K(x, y) we need
to have 1− y2, 1− x2, x2− y2, y2− x2 accurately computed. If we use the variables y0, y1, x0, x1 we
can get the values of 1 − y2 = y1(1 + y0) and 1 − x2 = x1(1 + x0) without introducing numerical
error. About x2 − y2, in our implementation we do not actually need to have it always computed
with a small relative error. The reason is related to the approximation of ∂p

∂y
(y) and w(x), where

we cluster the nodes at the boundaries to compensate the fact that the function changes more
rapidly there. Where the nodes are closer, we must also be more precise in their computation,
while where they are further apart the accuracy is less crucial. This means that when computing
x2 − y2 it is enough to keep the error small relatively to the values of y, 1 − y, x, 1 − x and for
this purpose we can use the formulation x2 − y2 = (x0 − y0)(x0 + y0) when y is close to 0 and
x2 − y2 = (y1 − x1)(x0 + y0) when y is close to 1.
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Radial

In the radial model with no leak-o�, what has been already said for KGD about the asymptotic
behaviour of the solution at the crack tip remains true and the same approach can be used.
Therefore we will just focus on what happens at the crack mouth.

Approximation and integration

For every function of the radial self-similar problem, we will consider the following asymptotic
behaviour at the crack mouth.

f(x) = b0x
β0 + b1x

β1 + h.o.t. x→ 0, (4.32)

where β1 = β0 + min(2− n, 1) (4.33)

and the coe�cients bi, β0 depend on the function and on the input parameters. In particular we
take β0 = 0 for w(x), β0 = −1 for q(x), β0 = −2 for ∂p

∂x
(x), β0 = −1 for p(x) and β0 = −1

2
for

p(x)x√
1−x2 . We remark that in the case of ∂p

∂x
(x), p(x) and p(x)x√

1−x2 , the leading asymptotic term that we
have chosen is stronger than the actual one, therefore in these cases b0 must be set to 0, similarly
to what we have seen previously for the crack tip.
We have made this choice because (see section 2.3) in the asymptotics of the pressure p(x) a
constant term and in some cases a logarithm appear. As a consequence the two leading terms can
become very close to each other making impossible to use the methods described above. Instead,
choosing the leading term in a suitable way, we can easily get a good approximation of p(x) using
the same approach and discretisation already used for the other functions. The drawback of this
approach, similarly to what we have seen at the crack tip, is that in this way ∂p

∂x
(x) and p(x) are

not very well approximated right close to the crack mouth. Nevertheless we underline that this
doesn't a�ect the overall quality of the solution.
As we have done for PKN and KGD, we can now proceed as seen in section 3.6 and then back to
3.3 and 3.4. For all the functions we have that α1 − α0 = 2

n+2
− 1

2
, β1 − β0 = min(2 − n, 1) and

we can take the parameters ma, mb equal to 2 and 4 respectively, to increase the regularity of g
(3.124) and (3.134) near 0 and 1. For this reason the changes of variable s (3.126) and (3.135) are
the same for all the functions and as a consequence the interpolation nodes are the same as well.

Integral operator

For the evaluation of the integral operator
� 1

0
∂p
∂y

(y)K(x, y)dy, at the crack mouth we can simply add

together the asymptotic behaviour of ∂p
∂y

(y), as we have just chosen it above, and the asymptotic

behaviour of the kernel. Therefore we can consider the asymptotic behaviour of ∂p
∂y

(y)K(x, y) as

f(x, y) = b0(x)yβ0 + b1(x)yβ1 + h.o.t. y → 0, (4.34)

where β0 = 0, β1 = min(2− n, 1) (4.35)

and the coe�cients bi depend on the input parameters. The term b0 must be set to 0 and we can
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proceed as seen in section 3.6 and 3.4.
The changes of variable s (3.146) and t (3.152) are de�ned by α1 − α0 = 2

n+2
− 1

2
, β1 − β0 =

min(2−n, 1) and by the parameters ma, mb, mc that can be taken equal to 2, 4, 3 respectively, to
increase the regularity of the function k in (3.158). Like for KGD, the set of interpolation nodes
yi,j to evaluate the integral operator depends on the set of nodes xi where we want to evaluate it.

What said above for KGD, about the accurate computation of the kernel K(x, y), holds for radial
as well.

Implementation details

We have seen that for every model we have a set of nodes xi where to approximate and integrate
all the functions. Therefore for each function f(x) we just need to have the values at the nodes
fi := f(xi). However to simplify the implementation it is better to work with the variables
fasyi := f(xi)/((1−xi)α0xβ0i ). This is useful because in this way the leading asymptotic coe�cients
of f(x) at 0 and 1 are already included in fasyi and therefore do not need to be treated separately.
The same holds true for the integral operators where we have the set of nodes yi,j and we will work

with the variables fasyi,j := f(xi, yj)/((1− yi)α0yβ0i ).
We also point out that for simplicity we are writing all the formulas in terms of x, y, but as said
in section 3.6, in the implementation of the solver we must represent the nodes using the variables
x0i , x1i , y0i , y1i . The appropriate representation must be chosen each time to avoid numerical
problems at the interval endpoints.

4.3 Fixed point solver

We describe here the �xed point solver, that is based on [56, 61, 80]. We start with an initial guess
of the crack opening wini(x) that has an asymptotic behaviour compatible with the problem, for
example

wini(x) =

{
a(1− x)

1
n+2 if PKN

a(1− x)
1
2 if KGD, radial.

, (4.36)

where a depends on the input parameters. Then a solution is found through an iterative process
made of two nested cycles in which the values of the variables are updated step by step as in (4.37).
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wini

L = B(w)

q = C(w,L)

∂p/∂x = F(q, w, L)

w = E(∂p/∂x, L) new iterationnew iteration

tol reached
inner cycle

tol reached
outer cycle

end

no

no

yes

yes

(4.37)

The inner cycle is repeated until the error of the inner problem de�ned by �uid �ow and elasticity
equations goes under the tolerance. Similarly the outer cycle is repeated until the error of the
solution of the self-similar problem goes under a desired tolerance.
To estimate the error we use the following criterion both for the inner and the outer cycle. We call
wi the value of w at the i-th iteration and de�ne ∆wi := wi − wi−1. Because �xed point iteration
has linear convergence, we have that the ratio ‖∆wi‖∞

‖∆wi−1‖∞ will remain approximately constant for
every i. Therefore the error at the i-th iteration can be approximated with a geometric series
obtaining

errwi :=
‖w − wi‖∞
‖w‖∞

=
‖
∑∞

j=0 ∆wi+j+1‖∞
‖w‖∞

≤
∑∞

j=0 ‖∆wi+j+1‖∞
‖w‖∞

=
‖∆wi‖∞
‖w‖∞

∞∑
j=0

‖∆wi+j+1‖∞
‖∆wi‖∞

(4.38)
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≈ ‖∆wi‖∞
‖wi‖∞

∞∑
j=0

(
‖∆wi‖∞
‖∆wi−1‖∞

)j+1

=
‖∆wi‖∞
‖wi‖∞

‖∆wi‖∞
‖∆wi−1‖∞

∞∑
j=0

(
‖∆wi‖∞
‖∆wi−1‖∞

)j
(4.39)

=
1

‖wi‖∞
‖∆wi‖2

∞
‖∆wi−1‖∞ − ‖∆wi‖∞

. (4.40)

Note that we do not ask for a small relative error of the solution at any point of the domain, but
just in in�nity norm. This basically means that it is acceptable that the relative error of w close to
the crack tip (where w goes to 0) might be relatively big. This is necessary to avoid convergence
problems due to numerical cancellation in the case of small or zero toughness.
After the iterative process has bee completed, the pressure p is computed integrating ∂p

∂x
and im-

posing a condition to determine the unknown constant coming from the integration. In the case
of PKN model we simply have p = w or equivalently the boundary condition p(1) = w(1) = 0.
Instead in the case of KGD and radial models we do not have an explicit boundary condition for
p, but the constant has to be chosen so that the pressure satis�es T (p, L) = KIC .

Fixed point iterations in general do not converge to a solution. Indeed this is true also in our
case, where if the algorithm is directly applied as stated above, the inner cycle will be divergent
in most of the cases. To address the problem a standard method is to change the length of the
step done at each iteration hoping for better results. More in detail, let us consider a generic �xed
point iteration

xi+1 = F (xi), (4.41)

where we are trying to solve the equation x = F (x). If the iterations do not converge or if the
convergence is slow we can de�ne xi+1 as

xi+1 = λF (xi) + (1− λ)xi (4.42)

and choose λ to get better results. In our case, we found through some numerical tests, that a
conservative choice to have convergence for all the models when 0 ≤ n ≤ 2, is to choose λ equal to
3/4 for the outer cycle and equal to 1/6 for the inner cycle. Better results in terms of speed can
be however obtained choosing λ depending on the model and on the input parameters.

Computational complexity

We discuss here the computational complexity of one iteration of the �xed point solver, depending
on N the number of nodes used for approximation.
In the case of PKN one iteration requires only evaluations of simple functions (O(N)) and inte-
grations (O(N log(N))). Therefore the overall computational complexity is O(N log(N)).
In the case of KGD and radial models we have in addition to evaluate the integral operator. One
evaluation requires the computation of the kernel (O(N2)), the evaluation of the derivative of the
pressure at the integration points (O(N2)) and the integration itself (O(N2 log(N))). Therefore
the overall computational complexity is O(N2 log(N)). However the integral operator is linear and
does not depend on the solution, therefore to save time it can be precomputed and stored in form
of a matrix. To do so it is necessary to evaluate it on a complete basis, resulting in a computational
complexity of O(N3 log(N)).
Once the integral operator is available as a matrix, for its evaluation it is su�cient a matrix vector
product (O(N2)). Therefore for KGD and radial the cost of one iteration is dominated by the
evaluation of the integral operator and the overall computational complexity is O(N2) operations.
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4.4 Newton solver

In alternative to the �xed point iteration, we can reformulate the problem as a single equation and
use Newton's method to solve the non-linear system that results from the discretisation:

F (w) := E(F(C(w,B(w)), w,B(w)),B(w))− w = 0. (4.43)

Again we start with an initial guess of the solution, but Newton's method is more sensitive to the
choice of the initial guess than �xed point iteration. Indeed if we want to have convergence we will
have to provide a better starting point, like

wini(x) =

{
a(1− x)

1
n+2 if PKN

a(1− x)
1
2 + b(1− x)

2
n+2 if KGD, radial,

(4.44)

where a and b depend on the input parameters. In general, for KGD and radial models, in case of
small or zero toughness a should be taken much smaller than b, while on the contrary in case of
large toughness b should be taken much smaller than a. After choosing the initial guess we update
w using Newton's iteration as in (4.45)

wini

w = w − J−1
F (w)F (w) new iteration

tol reached

end

no

yes

(4.45)

where we can compute JF , the Jacobian of F , as a composition of the Jacobians of the functions
that constitute F . The cycle is repeated until the error of the solution of the self-similar problem
goes under a desired tolerance.
To estimate the error we use a criterion similar to the one used for �xed point iteration, but this
time we also consider the residue F (w). Again we call wi the value of w at the i-th iteration
and de�ne ∆wi := wi − wi−1, with in addition Fi := F (wi). Because Newton's method has

quadratic convergence, the ratios ‖∆wi‖∞
‖∆wi−1‖2∞

and ‖Fi‖∞
‖Fi−1‖2∞

will remain approximately constant for
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every i. Therefore the error at the i-th iteration can be estimated with

erri := max(errwi , errFi), where (4.46)

errwi :=
‖w − wi‖∞
‖w‖∞

=
‖
∑∞

j=0 ∆wi+j+1‖∞
‖w‖∞

≤
∑∞

j=0 ‖∆wi+j+1‖∞
‖w‖∞

(4.47)

≈ ‖∆wi+1‖∞
‖wi‖∞

≈ 1

‖wi‖∞
‖∆wi‖3

∞
‖∆wi−1‖2

∞
(4.48)

errFi :=
‖Fi‖∞
‖w‖∞

≈ ‖Fi‖∞
‖wi‖∞

. (4.49)

As we have done for the �xed point iterator, also in Newton's method we do not ask for a small
relative error of the solution at any point of the domain, but just in in�nity norm.
Again, after the iterative process has been completed, the pressure p is computed integrating ∂p

∂x

and imposing the appropriate condition.

At every iteration of Newton's method it is necessary to solve the linear system JF (wi−1)∆wi =
−F (wi−1). To solve the linear system it is possible to use a direct method, for example the back-
slash command in Matlab that uses LU decomposition.
In alternative one can consider an iterative method like for example GMRES. The use of an itera-
tive solver has the advantage that it does not require the computation of the full Jacobian matrix.
Indeed in practical cases it is usually necessary to evaluate it only in a small number of directions,
therefore reducing the computational complexity.
If we use GMRES, the iterative process must be repeated until the error goes under a desired
tolerance. Therefore the error at the j-th GMRES iteration of the i-th Newton's iteration can be
estimated as

erri,j :=
‖JFasy(wi−1)∆wi,j + F asy(wi−1)‖∞

‖wasy‖∞
≈ ‖JF

asy(wi−1)∆wi,j + F asy(wi−1)‖∞
‖wasyi−1‖∞

, (4.50)

where (4.51)

wasy =
w

(1− x)α
, F asy =

F

(1− x)α
, α =

{
1

n+2
if PKN

1
2

if KGD or radial.
(4.52)

Note that for GMRES we have used a di�erent error estimate compared to �xed point and Newton's
method, indeed this time we must be more careful. In fact in our solver when we approximate
w, we actually approximate wasy (with an additional change of variable) and therefore if the new
value of wasy provided by GMRES has some uncontrolled error close to the crack tip, also the rest
of the function will be a�ected. For this reason the error in GMRES is measured on wasy. On the
contrary we did not need to be so strict when we tested the solution of �xed point or Newton's
solvers. Indeed in those cases the values close to the crack tip had already been given so that the
rest of the function was not badly a�ected.

Computational complexity

We discuss here the computational complexity of one iteration of Newton's solver, depending on
N the number of nodes used for approximation.
In addition to the computations needed for the �xed point solver, Newton's solver requires also
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the evaluation of the Jacobian matrix. It can be seen that the complexity of the evaluation of
the Jacobian in one direction is the same than the complexity of one evaluation of the function,
therefore, similarly to the �xed point case, it is O(N log(N)) for PKN and O(N2) for KGD and
radial.
If Newton's method is implemented using a direct solver for the linear system, the complete
Jacobian matrix has to be computed requiring O(N3) operations. The solution of the system
using for example the LU factorisation would require also O(N3) operations. Therefore the overall
complexity is O(N3).
If instead one uses an iterative solver for the linear system, like for example GMRES, the Jacobian
matrix has to be evaluated only on one direction for each GMRES iteration and the cost of one
GMRES iteration itself is O(N2). If the number of GMRES iterations required remains quite
small, as it turns out to be in our case, it is clear that iterative solver o�ers the best performance.
As a result, the overall computational complexity using GMRES is O(N2).

4.5 Multigrid method

Multigrid methods can be used successfully to accelerate the convergence in the solution of bound-
ary value problems, see for instance [74]. The main idea is to work with several grids of di�erent
re�nement, and use the computations from the coarser grids to speed up the computations for the
�ner grids. Methods based on di�erent techniques and with di�erent levels of complexity have
been developed, we will just use a basic implementation of the main idea. Nevertheless this will
allow us to speed up the execution of the algorithm while at the same time to estimate the error
of the solution due to the discretisation of the problem.

We describe now our multigrid procedure. We start solving the self-similar problem on a grid
with 23 + 1 = 9 nodes. After that, when we have a solution wm on the grid xm with 2m + 1 nodes,
we use it as initial guess to �nd the solution wm+1 on the grid xm+1 with 2m+1 + 1 nodes. Then

we compare the solutions wm and wm+1 on the grid xm and estimate the error as ‖w
m−wm+1‖∞
‖wm+1‖∞ .

If the error is under the required tolerance we stop, otherwise we re�ne the grid and repeat the
procedure.
We chose to use the grids xm with 2m + 1 elements because, as we have seen in section 3.1, they
are nested. This allows to pass directly from the �ner grids to the coarser ones just keeping the
values of the functions at the relevant points, while the opposite process can be obtained with just
one IDTT-1 and one DTT-1. For example if we want to pass between the set xm and the set xm+1

we can just do

f(xM) = f(xm+1
0 , xm+1

2 , . . . , xm+1
2m+1) (4.53)

f(xm+1) = T (T −1(f(xm)), 0, . . . , 0), (4.54)

where T (x) is the DTT-1, T −1(x) is the IDTT-1 and in (4.54) we have added 2m zeros. Another
advantage for using sets with 2m + 1 elements is that DTT-1, IDTT-1, DUT-1, IDUT-1 are op-
timised for this number of nodes, being based on a DCT-1 of the same size. This is due to the
fact that the algorithms generally used to perform the DCT-1 are optimised for 2m + 1 elements,
equivalently to what happens to the FFT of 2m elements.

The multigrid procedure that we have just described allows us to estimate the error of the so-
lution at any point of the algorithm, so we can decide when to stop without ending up using a grid
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that is too �ne for our needs. Moreover, each time we increase the nodes, we have a good initial
guess from the previous solution to start the solver of the non-linear system and therefore we will
need to do less iterations. In this way most part of the job is done using coarser meshes and only
few iterations are needed with the �nest ones.
Note that the speed-up also depends on the complexity of a single �xed point or a Newton itera-
tion. If the complexity of one iteration on N nodes is for example O(N2), then the advantage of
reducing the number of nodes is clearly greater compared to the case when the complexity is O(N).

We have just seen that to approximate the functions of PKN, KGD and radial models we work
with the sets of nodes xm with 2m + 1 elements. However we recall that in KGD and radial
models we also have another set of nodes to evaluate the integral operator. Due to the additional
di�culty coming from the presence of a non smooth kernel, it turns out that for the evaluation
of the integral operator it is a good choice to use a number of nodes that is roughly double than
for the approximation of the functions. Therefore, to each node of xmi will correspond (2m+1 + 1)
nodes for the integral operator, forming the set ym,2m of (2m + 1)(2m+1 + 1) elements. However
as previously mentioned, the integral operator can be precomputed and stored as a matrix, and
independently of how many nodes are used internally for its computation, the matrix will always
have size (2m + 1)× (2m + 1).

4.6 Comparison with benchmark

To verify the correctness of our solver, we compare it with some semi-analytical benchmarks for
the self-similar problem that have been proposed in [60, 61] for PKN and KGD and in [55, 56] for
radial. We will use our solver with a number of points N big enough to allows us to get a better
approximation of the solution than the benchmark itself, therefore actually measuring the error of
the benchmark. We will consider the relative error of the crack opening and length

errw :=
|wbm − wN |
|wN |

, errL :=
|Lbm − LN |
|LN |

, (4.55)

where wN , LN is our solution with N nodes and wbm, Lbm is the semi analytical benchmark. In some
plots we will also use the average error errwavg . Similar tests have been done in the aforementioned
references when building the benchmarks, therefore the results obtained here can be veri�ed.
Note that in all the tests of the self-similar solver we will take q∗ = 1. The choice of q∗ indeed
is not important because in PKN model a change in q∗ simply corresponds to a rescaling of the
solution. In KGD and radial models instead the situation is more complicated, nevertheless for
every combination q∗, KIC it is still possible to �nd a new value of KIC that, if combined together
with q∗ = 1, gives a solution that di�ers form the original solution only for a rescaling. For this
reason in our tests we will use a range of values of toughness, in such a way to cover all possible
situations.

PKN

The semi-analytical benchmark for PKN provided in [60, 61] is valid in the case of constant �ow,
that corresponds to γ = 1

2n+3
. We solve the problem using N = 23 + 1 = 9 nodes and use the

numerical solution to measure the error of the benchmark.
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� In �gure 4.1 we plot the relative error of w and L for di�erent values of the �uid parameter n.
The plots con�rm the correctness of our solver.

Figure 4.1: Error of the PKN semi-analytical benchmark, varying n.
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KGD

The semi-analytical benchmark for KGD provided in [60, 61] is valid in the case of constant �ow
when KIC = 0, that corresponds to γ = 1

n+2
and in the case of constant toughness when KIC > 0,

that corresponds to γ = n
n+2

. We solve the problem using N = 24 + 1 = 17 nodes and use the
numerical solution to measure the error of the benchmark.
� In �gure 4.2 we plot the relative error of w and L for KIC = 1 and di�erent values of n.
� In �gure 4.3 we plot the relative error of w and L for n = 1 and di�erent values of KIC .
� In �gure 4.4 we plot the relative error of w and L for di�erent values of KIC and n.
The plots con�rm the correctness of our solver.

Figure 4.2: Error of the KGD semi-analytical benchmark, KIC = 1 varying n.
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Figure 4.3: Error of the KGD semi-analytical benchmark, n = 1 varying KIC .
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Figure 4.4: Error of the KGD semi-analytical benchmark, varying KIC and n.

10-6

1

10-5

10

10-4

0.5

10-3

5

0 0

10-6

1

10-5

10

10-4

0.5

10-3

5

0 0

Radial

The semi-analytical benchmark for radial provided in [55, 56] is valid in the case of γ = 2−n
3(n+2)

,

that corresponds to constant input. We solve the problem using N = 24 + 1 = 17 nodes and use
the numerical solution to measure the error of the benchmark.
� In �gure 4.5 we plot the relative error of w and L for KIC = 1 and di�erent values of n.
� In �gure 4.6 we plot the relative error of w and L for n = 1 and di�erent values of KIC .
� In �gure 4.7 we plot the relative error of w and L for di�erent values of KIC and n.
The plots con�rm the correctness of our solver.
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Figure 4.5: Error of the radial semi-analytical benchmark, KIC = 1 varying n.
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Figure 4.6: Error of the radial semi-analytical benchmark, n = 1 varying KIC .
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Figure 4.7: Error of the radial semi-analytical benchmark, varying KIC and n.
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4.7 Convergence analysis

We want to verify the accuracy and the convergence properties of our solver. To do so we will
compute a numerical benchmark running our solver with a high number of nodes Nbm and then
compare it to the solutions obtained using smaller values of N . We will consider the relative error
of the crack opening and the crack length

errw :=
|wN − wNbm |
|wNbm |

, errL :=
|LN − LNbm |
|LNbm |

, (4.56)

where wN , LN is the solution with N nodes and wNbm , LNbm is the numerical benchmark. In some
plots we will also use the average error errwavg .

PKN

For the PKN model we consider the case with constant �ow, that corresponds to γ = 1
2n+3

and
take the solution with Nbm = 24 + 1 = 17 nodes as a numerical benchmark.

Here we consider the solution obtained using N = 22 + 1 = 5 nodes.
� In �gure 4.8 we show the relative error of w and L for di�erent values of n.
With only 5 nodes the self-similar problem is already solved with an extremely good accuracy.

Figure 4.8: Error of the PKN numerical solution with N = 5, varying n.
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Now we look at the convergence of the solution varying N the number of nodes.
� In �gure 4.9 we show the relative error of w and L for di�erent values of n and N .
With 10 nodes we are already at machine precision.
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Figure 4.9: Error of the PKN numerical solution, varying n and N .
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KGD

For the KGD model we consider the case with constant toughness, that corresponds to γ = n
n+2

and take the solution with Nbm = 28 + 1 = 257 nodes as a numerical benchmark.

Here we consider the solution obtained using N = 24 + 1 = 17 nodes.
� In �gure 4.10 we show the relative error for KIC = 1 and di�erent values of n.
� In �gure 4.11 we show the relative error for n = 1 and di�erent values of KIC .
� In �gure 4.12 we show the relative error for di�erent values of KIC and n.
With only 17 nodes the self-similar problem is already solved with a good accuracy. We can see
from the plots that the error does not change very much with di�erent values of x, instead when
n is small the problem becomes a little bit easier. It is also evident that the small toughness case
is much harder to solve than the large toughness case.

Figure 4.10: Error of the KGD numerical solution with N = 17, KIC = 1 varying n.
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Figure 4.11: Error of the KGD numerical solution with N = 17, n = 1 varying KIC .
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Figure 4.12: Error of the KGD numerical solution with N = 17, varying KIC and n.
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Now we look at the convergence of the solution varying N the number of nodes.
� In �gure 4.13 we show the relative error for KIC = 1 and di�erent values of n and N .
� In �gure 4.14 we show the relative error for n = 1 and di�erent values of KIC and N .
The convergence is much slower compared to PKN, but when KIC = 1 with 50 nodes the error is
already close to 10−10 for any value of n. It is again con�rmed that the convergence is faster in the
case of large toughness, while in the case of small toughness it gets slower as the number of nodes
increases. The problem is particularly di�cult in the transition area when toughness is small but
not yet close enough to 0, due to the bad asymptotic behaviour of the solution.
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Figure 4.13: Error of the KGD numerical solution with KIC = 1, varying n and N .
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Figure 4.14: Error of the KGD numerical solution with n = 1, varying KIC and N .
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Compared to the results previously obtained in [60, 61], we provide a solver capable to work for
every value of toughness, while with the other solver this was not possible. The accuracy of the
solution using the same number of nodes is also improved.

Radial

For the radial model we proceed as for KGD. We consider the case with constant toughness, that
corresponds to γ = n

n+2
and take the solution with Nbm = 28 + 1 = 257 nodes as a numerical

benchmark.

Here we consider the solution obtained using N = 24 + 1 = 17 nodes.
� In �gure 4.15 we show the relative error for KIC = 1 and di�erent values of n.
� In �gure 4.16 we show the relative error for n = 1 and di�erent values of KIC .
� In �gure 4.17 we show the relative error for di�erent values of KIC and n.
As for KGD, with only 17 nodes the self-similar problem is already solved with a good accuracy.
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We can see from the plots that the error does not change very much with di�erent values of x.
When n is small the problem becomes a bit easier. Instead it is again evident that the small
toughness case is harder to solve than the large toughness case.

Figure 4.15: Error of the radial numerical solution with N = 17, KIC = 1 varying n.
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Figure 4.16: Error of the radial numerical solution with N = 17, n = 1 varying KIC .
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Figure 4.17: Error of the radial numerical solution with N = 17, varying KIC and n.

10-7

1

10-6

105

10-5

0.5 100

10-4

10-5
0

1

10-7

105

10-6

0.5

10-5

100

10-5
0

Now we look at the convergence of the solution varying N the number of nodes.
� In �gure 4.18 we show the relative error for KIC = 1 and di�erent values of n and N .
� In �gure 4.19 we show the relative error for n = 1 and di�erent values of KIC and N .
The convergence is much slower compared to PKN, but when KIC = 1 with 50 nodes the error is
already close to 10−10 for any value of n. It is again con�rmed that the convergence is faster in the
case of large toughness, while in the case of small toughness it gets slower as the number of nodes
increases. The problem is particularly di�cult in the transition area when toughness is small but
not yet close enough to 0, due to the bad asymptotic behaviour of the solution.

Figure 4.18: Error of the radial numerical solution with KIC = 1, varying n and N .
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Figure 4.19: Error of the radial numerical solution with n = 1, varying KIC and N .
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Like for KGD, compared to the results previously obtained in [55, 56], we provide a solver capable
to work for every value of toughness, while with the other solver this was not possible. The
accuracy of the solution using the same number of nodes is also improved.

4.8 Conclusion

In this chapter we have built an e�ective solver for the 1D HF self-similar problem.

• The solver has been validated comparing the solutions with some self-similar benchmarks
present in literature.

• The quality of the solution is basically independent from the values of �uid parameter n.

• For PKN model machine precision is reached with very few nodes.

• For KGD and radial models it is possible to obtain an acceptable solution already with very
few nodes.

• For KGD and radial models it is possible to obtain a very accurate solution with a moderate
amount of nodes, even in the numerically di�cult small toughness case.
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Chapter 5

Solver for the time-dependent problem

In the previous chapter we have seen how to solve the self-similar problem, now we pass to the time-
dependent problem. For the spatial discretisation we will use the same approach of the self-similar
solver, while we will use an implicit Runge Kutta method for the temporal discretisation. The
resulting non-linear system will be solved using Newton's method. In addition to the impermeable
fracture case, we will also consider Carter leak-o�. Finally we will verify our results comparing
them with the self-similar solutions from the previous chapter and, in case of Carter leak-o�, with
some long time asymptotes.

5.1 General formulation

As we have done for the self-similar problem, we will write the equations in a generic way to
allow us to treat PKN, KGD and radial models all together. The elasticity equation, the fracture
propagation condition and the �uid �ow equation remain the same as for the self-similar problem
(see section 4.1), the only di�erence being that now the functions depend also on time. On the
contrary we need to modify the continuity equation, add Carter leak-o� and integrate L′ and ∂w

∂t

over time.
� crack length

L(t) = L(L′), where (5.1)

L(L′) = L(t∗) +

� t

t∗

L′(t)dt. (5.2)

� crack width

w(t, x) =W
(
∂w

∂t

)
, where (5.3)

W
(
∂w

∂t

)
= w(t∗, x) +

� t

t∗

∂w

∂t
(t, x)dt. (5.4)

83
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� continuity equation

q(t, x) = C
(
∂w

∂t
, w, L′, L, ql

)
, where (5.5)

C
(
∂w

∂t
, w, L′, L, ql

)
=



L′(t)xw(x) +
� 1

x
L′(t)w(x) + L(t)

(
∂w
∂t

(t, x) + ql(t, x)
)
dx

if PKN, KGD

(
L′(t)x2w(x) +

� 1

x
2L′(t)xw(x) + L(t)x

(
∂w
∂t

(t, x) + ql(t, x)
)
dx
)
/x

if radial,

(5.6)

this formulation can be derived integrating the continuity equation in the di�erential form.
� �uid balance equation

L′(t) = B
(
∂w

∂t
, w, L, ql, q∗

)
, where (5.7)

B
(
∂w

∂t
, w, L, ql, q∗

)
=



q∗(t)− L(t)
� 1

0
∂w
∂t

(t, x) + ql(t, x)dx� 1

0
w(x)dx

if PKN, KGD

q∗(t)
L(t)
− L(t)

� 1

0
∂w
∂t

(t, x) + ql(t, x)dx

2
� 1

0
w(x)xdx

if radial,

(5.8)

this formulation can be derived integrating the continuity equation in the di�erential form and
applying the boundary condition on the �uid input at the crack mouth.
� Carter leak-o�

ql(t, x) = Q(L), where (5.9)

Q(L) =
kcl√

t− L−1(L(t)x)
, (5.10)

the same for all models.
In the next sections we will see how to discretise the problem and from now on, when we will refer
to the operators just de�ned, we will mean their discretised version where for the time we consider
a single time step starting from t∗.

5.2 Spatial discretisation

The spatial discretisation in case of no leak-o� remains the same as for the self-similar problem.
Instead with Carter leak-o� in some cases there is a change in the asymptotic behaviour at the
crack tip, therefore it will be necessary to do some modi�cations.

In the case of PKN model when n = 0 the asymptotic behaviour is the same with or without
leak-o�, therefore no changes are needed. Instead when n > 0 the solution has a di�erent asymp-
totic behaviour, that further changes when time goes to in�nity, see section 2.2.
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If we ignore what happens for large values of time, we can consider the asymptotic behaviour of
the functions as

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1, (5.11)

where α1 = α0 +
1

2
− 1

n+ 2
= α0 +

n

2(n+ 2)
, (5.12)

where α0 remains the same as for no leak-o�. The changes of variables s (3.126) and (3.135)
depend on α1 − α0 = 1

2
− 1

n+2
and the parameter ma that can be chosen equal to 2. In this way,

if n is not too small, the solver works well for small and medium values of time, while it struggles
when approaching the long time asymptote. This happens for the same reason previously seen
in the case of small toughness, indeed when time goes to in�nity a0 tends to 0 while a1 tends to
in�nity, trying to mimic the behaviour of the long time asymptote. Nevertheless if we do not ask
for very small error the solver still works, even though for large values of time it requires a lot of
discretisation points. An additional problem instead happens when we decrease n, in fact in this
case we can see that α1−α0 also gets smaller and tends to 0 when n tends to 0. Therefore in this
situation it becomes practically impossible to use this approach because the change of variables s
(3.126) and (3.135) becomes too extreme and the approximation nodes are all moved close to the
crack tip.
If instead we want to include in the approximation also the behaviour of the long time asymptote,
we should then add also its asymptotic terms. Therefore we can consider the asymptotic behaviour
of the functions as

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1, (5.13)

where α1 = α0 +
n+ 2

4n+ 4
− 1

n+ 2
= α0 +

n2

4(n+ 1)(n+ 2)
(5.14)

where again α0 remains the same as for no leak-o�. We can immediately see that in this way the
transformation is practically never usable, because for n = 1 we have already that α1 − α0 = 1

24

and if n is smaller the situation gets even worse.
What we can do instead is to take inspiration from what we have previously done for KGD and
radial in case of small toughness and take the approximant with a stronger leading term the one
of the actual solution. Therefore we can consider the asymptotic behaviour of the functions as

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1, (5.15)

where α1 = α0 +
1

n+ 2
(5.16)

and α0 = 0 for w, q and p and α0 = −1 for ∂p
∂x
. We note that the coe�cient a0 must be forced

to 0, instead the value of ma can be chosen equal to 3 to make the approximation more e�ective.
Proceeding in this way we are able to approximate accurately the solution with a small number of
nodes, for both small and large values of time and for every n < 2. The only drawback is that the
solution is no longer approximated very accurately right close to the crack tip, but however this
does not a�ect the overall quality of the solution on the rest of the interval. We remark that this
spatial discretisation can be used e�ectively also in the case with no leak-o�, but the performance
is obviously reduced with respect to the discretisation proposed and tested in the previous chapter.

In the case of KGD and radial models the asymptotic behaviour with no leak-o� of with Carter
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leak-o� remains the same if KIC > 0, while it changes when KIC = 0. To obtain a solver that
works for every value of KIC with Carter leak-o�, we will follow the same idea used in the no
leak-o� case, trying to keep into account the asymptotic behaviour of both cases, see sections 2.3
and 2.4. Therefore we will consider the asymptotic behaviour functions of the problem as

f(x) = a0(1− x)α0 + a1(1− x)α1 + h.o.t. x→ 1, (5.17)

where α1 = α0 +
n+ 4

4n+ 4
− 1

2
, (5.18)

where α0 remains the same as for no leak-o�. The changes of variables s (3.126) and (3.135)
depend on α1 − α0 = n+4

4n+4
− 1

2
and the parameter ma that can be chosen equal to 2 as in the case

with no leak-o�.

5.3 Temporal discretisation

The problem of HF is sti�, therefore the use of a method suitable for this situation is usually
better. To determine if a method performs well on sti� problems the concepts of A-stability and
L-stability have been introduced [35].
We recall that a method is said A-stable if when applied to solve the di�erential equation

f ′(x) = kf(x) (5.19)

where k ∈ C and <(k) < 0, then the approximated solution tends to 0 as the number of steps
tends to in�nity, for any given step length. A method is instead said L-stable if when applied to
solve the same di�erential equations, then the solution tends to 0 after a single step as the step
length tends to in�nity.
To be considered good for sti� problems, a method should be at least A-stable, or preferably L-
stable (L-stability is a stronger property and implies A-stability). The main groups of methods for
temporal discretisation in integro-di�erential equations are linear multistep methods and Runge
Kutta methods. In both cases the explicit methods are never A-stable, so the choice for a sti�
problem is restricted to the implicit ones. Moreover linear multistep methods of order greater than
2 can never be A-stable [18], therefore if one wants to use an high order method the choice must
fall on Runge Kutta. Among the implicit Runge Kutta methods, we will use the Gauss Radau
IIA, a family that is L-stable for any order.

In general Runge Kutta methods to solve a di�erential equation ∂y
∂t

= f(t, y) take the form

yn+1 = yn + h

S∑
i=1

biki (5.20)

ki = f

(
tn + cih, yn + h

S∑
j=1

aijkj

)
, i = 1, . . . , S, (5.21)

where the parameters A, b, c are usually arranged in the Butcher tableau

c A
bT (5.22)
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The methods of the Radau IIA family are collocation methods based on the Radau quadrature
formula (for more details about Radau IIA family see [11]). Indeed, the vector c is formed by the
nodes of Radau quadrature rescaled in [0, 1], that are the roots of PS(2x−1)−PS−1(2x−1) where
PS is the Legendre polynomial of degree S. In a collocation method, the matrix A and the vector
b must satisfy the relation

S∑
j=1

aijp(cj) =

� ci

0

p(x)dx, i = 1, . . . , S
S∑
j=1

bjp(cj) =

� 1

0

p(x)dx (5.23)

for every polynomial p of degree less than S. This actually means that the solution is approximated
with a polynomial and indeed b are the Radau quadrature weights rescaled in [0, 1] (i.e. divided
by 2). We write here the Butcher tableau of the �rst three members of the family, that can be
expressed in a closed form. The one stage method (backward Euler)

1 1
1

(5.24)

the two stages method

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4
(5.25)

the three stages method

2
5
−
√

6
10

11
45
− 7

√
6

360
37
225
− 169

√
6

1800
− 2

225
+
√

6
75

2
5

+
√

6
10

37
225

+ 169
√

6
1800

11
45

+ 7
√

6
360

− 2
225
−
√

6
75

1 4
9
−
√

6
36

4
9

+
√

6
36

1
9

4
9
−
√

6
36

4
9

+
√

6
36

1
9

(5.26)

The other members of the family instead can only be computed numerically.
The order of a S stages Radau IIA is 2S − 1, because it is based on a Gaussian-like quadrature.
In practice however, if the solution is not very well behaved, these methods often su�er of order
reduction and become of order S.
We have seen that Radau IIA is a collocation method, and for this reason we have immediately
the values of the function and its derivative at the discretisation points

∂y

∂t
(tn + cih) = ki (5.27)

y(tn + cih) = yn + h

S∑
j=1

aijkj. (5.28)

Therefore the values of ∂y
∂t

at for value of time in the interval [tn, tn + h] can be computed interpo-

lating ∂y
∂t

(tn + cih) and the values of y taking the integral of the polynomial.
We underline that the order of the solver cannot in any case be 2S− 1 inside the interval, because
the order gain in Gaussian quadrature happens only when performing the integral on the whole
interval and anyway the order of the interpolation would still be S. Indeed in our solver we will
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need to know accurately the values of the crack length for any possible value of time for the compu-
tation of Carter leak-o�, and to do so we will have to interpolate the temporal discretisation. This
means that the order of the approximation of the leak-o� is anyway S, therefore in the following
we will simply consider an S stage Radau IIA method as having order S.

The main disadvantage of using a fully implicit Runge Kutta method like Gauss Radau IIA is
that if S is the number of stages and N is the number of unknowns of the spatial discretisation,
then the resulting non-linear system has SN unknowns. Therefore if one for example wants to
solve it using Newton's method, it will require the solution of a linear system with SN unknowns,
which will take O(S3N3) operations with a solver based on LU factorisation, or in alternative,
in the best case scenario of fast convergence, O(S2N2) operations using an iterative solver. This
makes evident that the overall computational complexity grows rapidly when increasing the num-
ber of stages S.
Although for simplicity we will just stick to the basic implementation, it is worth to mention
that a possible approach to overcome this problem can be found in [76], where instead of solving
directly the original linear system with SN unknowns, the solution is approximated through the
iterated solution of S linear systems with N unknowns. An alternative way to reach the same goal
can be also found in [9], where the Newton iteration is modi�ed and, with the use of a suitable
transformation, reverted to the solution of S linear systems with N unknowns.
Directly related to this last approach are SIRK methods [10], where the Runge Kutta matrix A is
carefully chosen to simplify the computations. It is also worth to mention DIRK methods [4], less
accurate of the previous ones, but of easier implementation. Indeed in this last case the Runge
Kutta matrix A is lower triangular and therefore the solution can be directly found solving S
non-linear system with N unknowns.

5.4 Carter leak-o�

In the case of Carter leak-o� we also need to evaluate the function

ql(t, x) =
kcl√

t− L−1(L(t)x)
=

kcl√
t− t0(L(t)x)

. (5.29)

To compute t0(L) we will not invert the approximation of L(t), but instead we will interpolate
directly the inverse function t0(L) itself. However this computation can be a�ected by numerical
problems close to the crack tip and we have already underlined that it is important to have an
accurate approximation of the functions on the whole interval. Indeed when x is close to 1 then
t − t0(L(t)x) is close to 0, but t can be arbitrarily large introducing huge numerical error when
performing the subtraction. Let us see now what to do to avoid this problem.

We consider the temporal discretisation as seen in the previous section and call t∗ the begin-
ning of the actual time step. We consider the nodes ti = t∗ + hci from the previous section and
de�ne ∆it = ti − t, therefore we have ∆it∗ = hci and ∆itj = h(ci − cj) that are accurately com-
puted.
For simplicity we describe now only the cases when L(ti)x > L(t∗), that means we are working
on the part of the function t0(L) currently processed in the new time step. In the opposite case
instead, when we deal with the values stored from the previous time steps, the way to proceed
remains similar.
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We de�ne ∆iL(t) = L(ti) − L(t), therefore from the previous section we have ∆iL(tj) = L(ti) −∑S
k=1 ajkL

′(tk) =
∑S

k=1(aik − ajk)L
′(tk) that in the rightmost formulation is accurately com-

puted. Finally we de�ne the function ∆it0(∆iL) := ti − t0(L(ti) − ∆L(t)) and we approx-
imate it accurately, interpolating the values of the function ∆it∗,∆it1, . . . ,∆itS at the nodes
∆iL(t∗),∆iL(t1), . . . ,∆iL(tS). Finally we can express the leak-o� at time ti as

ql(ti, x) =
kcl√

ti − t0(L(ti)x)
=

kcl√
ti − (ti −∆it0(L(ti)− L(ti)x))

(5.30)

=
kcl√

∆it0(L(ti)(1− x))
. (5.31)

We note that when we interpolate the inverse function we are working on some nodes that are
not predetermined, indeed while the original nodes are the points ti, in the case of the inverse the
nodes become L(ti). However this should not be a big problem just for the fact that we are not
using very high order polynomials for time discretisation and in this case the choice of the nodes
is less important.
Nevertheless we remark that the nodes generally used in Gaussian quadrature, in our case Gauss
Radau nodes, share the same stability properties of the Chebyshev nodes, because they all tend
to cluster at the interval endpoints. This stability property is also preserved when we want to
interpolate the inverse function. Indeed if we evaluate an invertible function on nodes that cluster
at the endpoints also the values of the function on the same nodes will tend to cluster at the
maximum and minimum. These values are actually the interpolation nodes for the inverse function
and therefore they are clustered at the endpoints. To be precise this might not be true in general,
but it is for sure true if the starting interval is short enough, in which case an invertible function
can be approximated as linear. This means that in the worst case it is always possible to have a
stable interpolation of the inverse taking a time step short enough.

Long time asymptote

We state here some long time asymptotes for the case of Carter leak-o�, that we will use later to
test the correctness of our solver. More general results can be found but we will consider here just
the case of Newtonian �uid n = 1, constant input q∗ and for KGD and radial constant toughness
KIC .

PKN

In the case of PKN model with constant input, Newtonian �uid and Carter leak-o�, it can be seen
from [53] that when t → ∞ the solution can be expressed in a closed form. Indeed it is easy to
verify that

L(t) ∼ 2q∗
πkcl

t
1
2 (5.32)

ql(t, x) ∼ kcl√
1− x2

t−
1
2 (5.33)

q(x) ∼ 2q∗
π

arcsin(
√

1− x2) (5.34)

w(t, x) ∼
2
√
q∗

√
πk

1
4
cl

(
√

1− x2 − x arcsin(
√

1− x2))
1
4 t

1
8 . (5.35)
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KGD

In the same way in the case of KGD model with constant input, constant toughness, Newtonian
�uid and Carter leak-o�, it is easy to verify that when t→∞ we have

L(t) ∼ 2q∗
πkcl

t
1
2 (5.36)

ql(t, x) ∼ kcl√
1− x2

t−
1
2 (5.37)

q(x) ∼ 2q∗
π

arcsin(
√

1− x2) (5.38)

w(t, x) ∼ w∞(x)t
1
4 . (5.39)

where this time w∞(x) depends on the input parameters and cannot be expressed in a simple form
but can be approximated numerically.

Radial

Finally in the case of radial model with constant input, constant toughness, Newtonian �uid and
Carter leak-o�, it is easy to verify that when t→∞ we have

L(t) ∼ 2

√
q∗
πkcl

t
1
4 (5.40)

ql(t, x) ∼ kcl√
1− x4

t−
1
2 (5.41)

q(x) ∼
√
q∗kcl
π

arcsin
√

1− x4

x
t−

1
4 (5.42)

w(t, x) ∼ KIC

√
L(t)(1− x2)

1
2 . (5.43)

In this case when time goes to in�nity the fracture passes to toughness dominated regime.

5.5 Newton solver

To solve the time-dependent problem a generalised version of the �xed point solver used for the
self-similar problem could be used [80]. However while it works well with slowly changing boundary
conditions, in more di�cult situations it turns out to be unstable. To overcome these limitations,
we will instead implement a generalised version of the Newton's solver used for the self-similar
problem. Therefore, as done previously, we reformulate the problem as a single equation and then
use Newton's method to solve the non-linear system that results from the discretisation:

F

(
∂w

∂t
, L′
)

:=

(
F ∂w

∂t

(
∂w
∂t
, L′
)

FL′
(
∂w
∂t
, L′
)) = 0, (5.44)
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where

F ∂w
∂t

(
∂w

∂t
, L′
)

:= (5.45)

W−1

(
E
(
F
(
C
(
∂w

∂t
,W

(
∂w

∂t

)
, L′,L(L′),Q(L(L′))

)
,W

(
∂w

∂t

)
,L(L′)

)
,L(L′)

))
− ∂w

∂t
(5.46)

FL′

(
∂w

∂t
, L′
)

:= B
(
∂w

∂t
, w, L,Q(L(L′)), q∗

)
− L′. (5.47)

We start with an initial guess of the solution, a good choice can be something like

∂w

∂t ini
(t, x) = 0, L′ini(t) = L′(t∗). (5.48)

After choosing the initial guess we update ∂w
∂t

and L′ using Newton's iteration as in 5.49

∂w
∂t ini

, L′ini

(
∂w
∂t

L′

)
=

(
∂w
∂t

L′

)
− J−1

F

(
∂w
∂t
, L′
)
F
(
∂w
∂t
, L′
)

new iteration

tol reached

end

no

yes

(5.49)

where we can compute JF , the Jacobian of F , as a composition of the Jacobians of the functions
that constitute F . The cycle is repeated until the error of the solution of the problem goes under
a desired tolerance.
To estimate the error we use a criterion similar to the one used in the self-similar case. We call wi :=
W
(
∂wi
∂t

)
and Li := L(L′i) the values of w and L at the i-th iteration and de�ne ∆wi := wi − wi−1

and ∆Li := Li − Li−1, with in addition Fw,i := W
(
F ∂w

∂t

(
∂wi
∂t
, L′i
))

and FL,i := L
(
FL′
(
∂wi
∂t
, L′i
))
.

This is done because we are not actually interested in having a small error in ∂w
∂t

and L′, but
instead we just want to control w and L. Finally, as we have done for the self-similar solver, the
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error at the i-th iteration can be estimated with

erri := max(errwi , errLi , errFw,i , errFL,i), where (5.50)

errwi := max
t

(
‖w − wi‖∞
‖w‖∞

)
≈ max

t

(
1

‖wi‖∞
‖∆wi‖3

∞
‖∆wi−1‖2

∞

)
(5.51)

errLi := max
t

(
|L− Li|
|L|

)
≈ max

t

(
1

|Li|
|∆Li|3

|∆Li−1|2

)
(5.52)

errFw,i := max
t

(
‖Fw,i‖∞
‖w‖∞

)
≈ max

t

(
‖Fw,i‖∞
‖wi‖∞

)
(5.53)

errFL,i := max
t

(
|FL,i|
|L|

)
≈ max

t

(
|FL,i|
|Li|

)
. (5.54)

As we have done for the self-similar problem, we do not ask for a small relative error of the solution
at any point of the domain, but just in in�nity norm.
After the iterative process has been completed, the pressure p is computed integrating ∂p

∂x
and

imposing the appropriate condition.

If we use GMRES to solve the linear system JF

(
∂wi−1

∂t
, L′i−1

)(
∆∂wi

∂t

∆L′i

)
= −F

(
∂wi−1

∂t
, L′i−1

)
, the

iterative process must be repeated until the error goes under a desired tolerance. Therefore the
error at the j-th GMRES iteration of the i-th Newton's iteration can be estimated as

erri,j := max(errw,i,j, errL,i,j), where (5.55)

errw,i,j = max
t


∥∥∥∥JFasy∂w

∂t

(∂wi−1

∂t
, L′i−1)

(
∆
∂wi,j
∂t

∆L′i,j

)
+ F asy

∂w
∂t

(∂wi
∂t i−1

, L′i−1)

∥∥∥∥
∞

‖wasy‖∞

 (5.56)

≈ max
t


∥∥∥∥JFasy∂w

∂t

(∂wi−1

∂t
, L′i−1)

(
∆
∂wi,j
∂t

∆L′i,j

)
+ F asy

∂w
∂t

(∂wi
∂t i−1

, L′i−1)

∥∥∥∥
∞

‖wasyi−1‖∞

 (5.57)

errL,i,j = max
t


∣∣∣∣JFL(∂wi−1

∂t
, L′i−1)

(
∆
∂wi,j
∂t

∆L′i,j

)
+ FL(∂wi

∂t i−1
, L′i−1)

∣∣∣∣
|L|

 (5.58)

≈ max
t


∣∣∣∣JFL(∂wi−1

∂t
, L′i−1)

(
∆
∂wi,j
∂t

∆L′i,j

)
+ FL(∂wi

∂t i−1
, L′i−1)

∣∣∣∣
|Li−1|

 , (5.59)

where

∂wasy

∂t
=

∂w
∂t

(1− x)α
, F asy

∂w
∂t

=
F ∂w

∂t

(1− x)α
, α =


1

n+2
if PKN and no leak-o�

0 if PKN and Carter leak-o�
1
2

if KGD or radial.

(5.60)
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We note that when we have built F ∂w
∂t
, at the end we have applied W−1 and then subtracted ∂w

∂t
.

However we could have simply de�ned a function Fw, stopping right after the elasticity equation
and then subtracting w instead. Yet the reason for which we decided to do this additional step
and use F ∂w

∂t
is because it o�ers better performances in the application of GMRES reducing the

number of iterations.

Computational complexity

As we have done for the self-similar problem, if N is the number of nodes of the spatial discretisa-
tion and S the number of Runge Kutta stages, we can evaluate the computational complexity of
the time-dependent solver. As for the self-similar problem, also this time we can precompute the
integral operator and store it in form of a matrix. In this case the precomputation will be even
more bene�cial considering that we can reuse it at every time step.
There are two main di�erences between the self-similar and the time-dependent problem in the
evaluation of the function F. The �rst is that in the time-dependent problem we need to perform
integration/di�erentiation in time (O(S2N)). The second is that all the other operations must be
repeated for all S stages. Therefore, recalling what we have said for the self-similar case, for time-
dependent problem the computational complexity of one evaluation of F isO(max(S2N,SN log(N)))
for the PKN model and O(max(S2N,SN2)) for KGD and radial.
As in the case of the self-similar problem also this time the complexity of one evaluation of F
is the same of the complexity of the evaluation of the Jacobian JF in one direction. Using an
iterative solver for the linear system like GMRES, the complexity of one GMRES iteration itself is
O(S2N2) plus the evaluation of the Jacobian in one direction. Therefore if the number of iterations
is limited, the overall complexity will be O(S2N2) for all the models.

5.6 Adaptive algorithm

For the time-dependent problem we will use the same multigrid approach that we used for the self-
similar problem. In addition we will estimate the error coming from the temporal discretisation
using together an S stage and an S + 1 stage Runge Kutta method and comparing the results.

Multigrid method

After choosing the time step length we start working with S stages for the temporal discretisation
and proceed with the spatial discretisation like in section 4.5. Therefore we start by solving the
problem with 23 + 1 = 9 nodes and then, when we have a solution (∂w/∂t, L′)S,m with 2m + 1
nodes, we use it as initial guess to �nd a solution (∂w/∂t, L′)S,m+1 with 2m+1 +1 nodes. We repeat
the process until we reach an M such that the error coming from the spatial discretisation

errspace = max

(
max
t

(
‖wS,M−1 − wS,M‖∞

‖wS,M‖∞

)
,max

t

(
|LS,M−1 − LS,M |

|LS,M |

))
(5.61)

goes under the desired tolerance.
Now we take the last result (∂w/∂t, L′)S,m+1, we interpolate it in time and use it as initial guess
to solve again the problem on the same time step, with again 2M+1 + 1 nodes but this time with
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S+1 stages. Therefore we get a solution (∂w/∂t, L′)S+1,m+1 and we can estimate the error coming
from the temporal discretisation as

errtime = max

(
max
t

(
‖wS,M+1 − wS+1,M+1‖∞

‖wS+1,M+1‖∞

)
,max

t

(
|LS,M+1 − LS+1,M+1|

|LS+1,M+1|

))
. (5.62)

If the error is above the tolerance the solution is rejected and we try again with a shorter time
step, otherwise the solution is accepted and we can proceed to the next time step.
We note that in general it is possible to embed an error estimate in Runge Kutta methods and this
is true also in our case, see for example [35]. However if we run an embedded S + 1 stage method,
we have to solve the whole problem using S+1 stages, but anyway the error estimate is equivalent
to the result of an S stage method. Instead with our approach �rst we solve the whole problem
with S stages and then we only need few iterations with S + 1 stages because we are using the S
stage solution as an initial guess. Therefore the big part of the job is done with S stages and the
computational cost is reduced.

Time step choice

After we have solved the problem for a given time step, we need to choose the length of the
following one, we can proceed as suggested in [35]. In our case to estimate the error we are using
an S stage Runge Kutta method that has order S, therefore the error goes like err = ChS where
h is the time step length.
In case of a rejected time step we can simply estimate the constant as C = err/hS and in order to
get an error close to the tolerance we can choose the new step as

hnew =

(
fac · tol

C

) 1
S

= h

(
fac · tol
err

) 1
S

, (5.63)

where fac is a safety factor.
In case of an accepted time step instead, if we call Ck the constant at the k-th time step, it is
better to assume the the ratio Ck/Ck−1 remains constant, therefore we get that Ck+1 ≈ C2

k/Ck−1 =
err2

k/errk−1(hk−1/h
2
k)
S. Then the choice for the new time step is

hnew =

(
fac · tol
Ck+1

) 1
S

=
h2
k

hk−1

(
fac · tol · errk−1

err2
k

) 1
S

. (5.64)

Following [35], the safety factor fac can be taken equal to about 0.5. Indeed choosing a value of
fac smaller than 1 is equivalent to aim for a smaller tolerance than required, that means that the
actual error is more likely to stay below it. As a consequence the step is taken a bit smaller, but
the risk of step rejection is greatly reduced.

5.7 Comparison with the self-similar solution

To verify the correctness of our solver for the time-dependent problem, we will compare it to the
self-similar solver presented in the previous chapter. The spatial discretisation that we use in the
self-similar and in the time-dependent solvers is essentially the same and we have already analysed
it. For this reason in this section we will only analyse the temporal discretisation and we will not
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perform again the tests for several di�erent values of the �uid parameter n and rock toughness
KIC . We will simply consider the same self-similar solution already tested in section 4.7 in the
case of n = 1 (Newtonian �uid) and KIC = 1 (for KGD and radial), and solve the corresponding
time-dependent problem.
We will set the start time of the simulation as 10−5, while the end time as 105. We will require
an error smaller than 10−5 and we will use together the Runge Kutta methods of order 3 and 4
(RK34).

PKN

For the PKN model, the self-similar problem in the case of constant input and n = 1 corresponds
to γ = 1

5
.

� In �gure 5.1 we plot the relative error of w and L.
� In �gure 5.2 we show the time step length.
We can see that the error does not depend much on x and the reason is that here the error
from the temporal discretisation dominates the error from the spatial discretisation. This happens
because in the spatial discretisation, when we re�ne the grid, we double the points of the grid and
therefore the higher order solution is much better than the lower order one. On the other hand
the same di�erence is not present in the temporal discretisation where we are using Runge Kutta
methods of order 3 and 4, so the error that we are actually seeing is just coming from temporal
discretisation. The error remains consistently below the required tolerance of 10−5 con�rming the
good performance of the time step prediction strategy. The time step length increases exponentially
in time.

Figure 5.1: Error of the PKN numerical solution with RK34 and required tolerance 10−5.
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Figure 5.2: Time step length for PKN with RK34 and required tolerance 10−5.
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KGD

For the KGD model, the self-similar problem in the case of constant input, n = 1 and constant
toughness corresponds to γ = 1

3
.

� In �gure 5.3 we plot the relative error of w and L.
� In �gure 5.4 we show the time step length.
As for PKN the error remains consistently below the required tolerance and the time step length
increases exponentially in time.

Figure 5.3: Error of the KGD numerical solution with RK34 and required tolerance 10−5.
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Figure 5.4: Time step length for KGD with RK34 and required tolerance 10−5.
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Radial

For the radial model, the self-similar problem in the case of n = 1 and constant toughness corre-
sponds to γ = 1

3
.

� In �gure 5.5 we plot the relative error of w and L.
� In �gure 5.6 we show the time step length.
As for PKN and KGD the error remains consistently below the required tolerance and the time
step length increases exponentially in time.

Figure 5.5: Error of the radial numerical solution with RK34 and required tolerance 10−5.
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Figure 5.6: Time step length for KGD with RK34 and required tolerance 10−5.
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5.8 Convergence analysis

We want now to analyse the convergence properties of the temporal discretisation. We will run
the solver using di�erent orders of Runge Kutta and asking for di�erent values of tolerance to see
how many time steps are necessary to get the desired solution. We consider the same problems
of the previous section and we set the start time of the simulation as 10−5, while instead the end
time is 100.
� In �gures 5.7 5.8 5.9 we show the number of time steps necessary to solve the problem with the
required tolerance.

Figure 5.7: PKN, number of time steps with start time 10−5, end time 100 and tolerance 10−5.
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Figure 5.8: KGD, number of time steps with start time 10−5, end time 100 and tolerance 10−5.
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Figure 5.9: Radial, number of time steps with start time 10−5, end time 100 and tolerance 10−5.
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It is clear that the higher order methods need far fewer steps when the required tolerance is
very small, while the di�erence is less noticeable if the required tolerance is larger. RK12 can be
discarded because it always requires many more time steps compared to the others. On the other
hand if we consider the extra cost of an higher order step, and take a reasonable tolerance, also
RK45 and RK56 do not seem very interesting. The best choice therefore appear to be between
RK23 and RK34, both working well with large tolerance, but RK34 has an edge because of a better
performance with smaller tolerances.

5.9 Convergence to long time asymptote with Carter leak-o�

To verify the correctness of our solver for Carter leak-o�, we test its convergence to the long time
asymptotes presented in section 5.4. Indeed we expect the solution to converge to these asymptotes
if the end time is large enough. Here we consider the case with n = 1, constant input q∗ = 1 and
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for the KGD and radial models constant toughness KIC = 1. We start the simulation at t = 10−5

from the self-similar solutions already seen in the previous section. We will use the Runge Kutta
methods of order 3 and 4 (RK34) with required error smaller than 10−5.
� In �gures 5.10 5.11 5.12 we show the relative distance between the numerical solution and the
long time asymptote

∆w :=

∣∣∣∣w − wltawlta

∣∣∣∣ , ∆L :=

∣∣∣∣L− LltaLlta

∣∣∣∣ , (5.65)

where wlta and Llta are the long time asymptotes.
As time gets larger, we can see from the plots that the numerical solution indeed converges to the
asymptote until the distance reaches the numerical error asked to the solver.

Figure 5.10: Distance between the PKN numerical solution and the long time asymptote with
required tolerance 10−5.
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Figure 5.11: Distance between the KGD numerical solution and the long time asymptote with
required tolerance 10−5.
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Figure 5.12: Distance between the radial numerical solution and the long time asymptote with
required tolerance 10−5.
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5.10 Conclusion

In this chapter we have built an e�ective solver for the HF 1D time-dependent problem.

• In the case of impermeable rocks the solver has been validated comparing the solutions with
the self-similar problem previously solved.

• In the case of Carter leak-o� the solver has been validated showing its convergence to the
long time asymptote.

• The adaptive algorithm performed as expected, keeping the error under the desired tolerance.

• For our purposes the most e�ective couple of integrators in the Radau IIA Runge Kutta
family is that with 3 and 4 stages.

• Thanks to the multi-grid approach only 1 or 2 Newton iterations are required with the �nest
discretisation.
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Chapter 6

Simulations

In this chapter we will run some simulations to investigate the behaviour of HF under some
particular boundary conditions. To do so we will set the physical parameters to some real world
values, similar to the ones that can be found in [38, 40]:

E

1− ν2
= 3 · 1010 Pa, ν = .25, KIC = 1.3 · 106 Pa

√
m, (6.1)

kcl = 5 · 10−5 m/
√
s, µf = 10−3 Pa s, Q∗ = 6 · 10−3 m3/s, (6.2)

h = 8 m (PKN), h = 30 m (KGD), tend = 104s. (6.3)

In the normalised variables these values corresponds approximately to:

PKN KGD radial (6.4)

K̃IC = 10−4 10−4 (6.5)

k̃cl = 2 · 10−10 10−10 10−10 (6.6)

q̃∗ = 1.5 · 10−15 10−16 10−15 (6.7)

t̃end = 2.5 · 1015 1016 1016. (6.8)

As for the initial conditions, we will start the simulations from a very small crack, of virtually zero
length and zero opening.
We will simulate the following situations:

� pumping rate periodically oscillating in time
� leak-o� coe�cient periodically oscillating in space
� toughness periodically oscillating in space.

The aim of these simulations, other than to prove the e�ectiveness of the solver, is to test what
is the e�ect of non-constant physical parameters on fracture propagation. We want to see if there
are relevant di�erences compared to the case with constant parameters or if instead the e�ect can
be neglected. Despite in the real world it is unlikely to have such regular oscillations, studying
this simpler case can give an insight on what may actually happen in a situation in which the
oscillations can be random.
In the next sections we will make a comparison between the solutions obtained with oscillating
parameters and the ones obtained with constant parameters. For this purpose we will consider

103
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the relative distance of crack length, crack propagation speed and crack width at the mouth, the
middle and the tip of the fracture

δl =

∣∣∣∣ losc(t)− lcon(t)

lcon(t)

∣∣∣∣ , δv =

∣∣∣∣∣ dldt
osc

(t)− dl
dt

con
(t)

dl
dt

con
(t)

∣∣∣∣∣ (6.9)

δwmou =

∣∣∣∣wosc(t, 0)− wcon(t, 0)

wcon(t, 0)

∣∣∣∣ , δwmid =

∣∣∣∣∣wosc(t, l2)− wcon(t, l
2
)

wcon(t, l
2
)

∣∣∣∣∣ , δwtip =

∣∣∣∣wosc(t, l)− wcon(t, l)

wcon(t, l)

∣∣∣∣ .
(6.10)

Here f osc stands for a variable taken from the solution of the problem with an oscillating parameter
and f con for a variable taken from the solution of the problem with constant parameters.

6.1 Oscillating pumping rate

We consider here the case with oscillating pumping rate and constant toughness (for KGD and
radial), with or without leak-o�. The oscillating pumping rate is de�ned by

Qosc
∗ (t) = Q∗(1 + a sin(2πbt)), (6.11)

where

a =


1 if PKN

1 if KGD and radial with no leak-o�

.5 if KGD and radial with carter leak-o�

(6.12)

b = 1 (period of 1 second). (6.13)

In this way, on the long run, the total amount of �uid pumped is the same as when the pumping
rate is constantly Q∗. We chose to consider extreme oscillations with amplitude Q∗ or 0.5Q∗ so
that the e�ects on the fracture are evident as much as possible. In case of KGD and radial models
with Carter leak-o� we have reduced the amplitude of the oscillations to 0.5Q∗ to avoid crack
stopping, that is not treated by our solver.

PKN

We consider here PKN model with oscillating pumping and no leak-o�.
� In �gure 6.1 we plot the �rst few seconds of the simulation, in this way it is possible to see clearly
how the oscillating pumping a�ects the shape and length of the fracture. On the left we plot the
evolution in time of the crack opening, on the right we plot crack length and propagation speed
for both the oscillating and constant pumping cases.
� In �gure 6.2 we plot the relative di�erence between the oscillating and constant pumping solutions
on a longer time interval, in this way it is possible to see the trend as time increases. On the left
we plot the crack opening at the mouth, middle and tip of the crack, on the right we plot the crack
length and propagation speed.
From the plots it is possible to see that the crack opening oscillates more in the area close to the
crack mouth, while the e�ect is less evident moving near the crack tip. We can also see that the
oscillations in crack opening, length and speed decay rapidly in time becoming soon negligible.



6.1. OSCILLATING PUMPING RATE 105

Figure 6.1: PKN model, oscillating pumping (amplitude Q∗, period 1s), no leak-o�.
Crack opening (left), crack length and speed (constant pumping case in red) (right).
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Figure 6.2: PKN model, oscillating pumping (amplitude Q∗, period 1s), no leak-o�.
Comparison with constant pumping case, crack opening (left), crack length and speed (right).
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Now we proceed in a similar way in the case with Carter leak-o�.
� In �gure 6.3 we plot crack opening, length and speed.
� In �gure 6.4 we plot the relative di�erences of crack opening, length and speed.
This time, compared to the case with no leak-o�, we can see that the crack opening oscillations are
more noticeable also near the crack tip and that the crack speed oscillations are bigger. However,
in this case too, the oscillations decay rapidly in time becoming soon negligible.
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Figure 6.3: PKN model, oscillating pumping (amplitude Q∗, period 1s), Carter leak-o�.
Crack opening (left), crack length and speed (constant pumping case in red) (right).
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Figure 6.4: PKN model, oscillating pumping (amplitude Q∗, period 1s), Carter leak-o�.
Comparison with constant pumping case, crack opening (left), crack length and speed (right).
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KGD

We consider here KGD model with oscillating pumping and we proceed as done previously for
PKN. In the case with Carter leak-o� we have reduced the amplitude of the oscillations to avoid
crack stopping.
� In �gures 6.5 and 6.6 we plot the case with no leak-o�.
� In �gures 6.7 and 6.8 we plot the case with Carter leak-o�.
Compared to the simulations run with PKN model, this time the crack opening oscillations are
more evident also near the crack tip and the crack speed oscillations are stronger. This is related
to the fact that in KGD model the elasticity operator is non-local and tends to propagate the
e�ects of the oscillating pumping further away from the crack mouth. However, as seen previously
for PKN, also this time the oscillations decay rapidly in time becoming soon negligible.



6.1. OSCILLATING PUMPING RATE 107

Figure 6.5: KGD model, oscillating pumping (amplitude Q∗, period 1s), no leak-o�.
Crack opening (left), crack length and speed (constant pumping case in red) (right).
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Figure 6.6: KGD model, oscillating pumping (amplitude Q∗, period 1s), no leak-o�.
Comparison with constant pumping case, crack opening (left), crack length and speed (right).
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Figure 6.7: KGD model, oscillating pumping (amplitude 0.5Q∗, period 1s), Carter leak-o�.
Crack opening (left), crack length and speed (constant pumping case in red) (right).
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Figure 6.8: KGD model, oscillating pumping (amplitude 0.5Q∗, period 1s), Carter leak-o�.
Comparison with constant pumping case, crack opening (left), crack length and speed (right).
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Radial

We consider here radial model with oscillating pumping and we proceed as done previously for
PKN and KGD. Also for radial, in the case with Carter leak-o� we have reduced the amplitude of
the oscillations to avoid crack stopping.
� In �gures 6.9 and 6.10 we plot the case with no leak-o�.
� In �gures 6.11 and 6.12 we plot the case with Carter leak-o�.
The results in the case of radial model are qualitatively similar to the ones obtained in the case
of KGD. This means that also for radial the oscillations decay rapidly in time becoming soon
negligible.

Figure 6.9: Radial model, oscillating pumping (amplitude Q∗, period 1s), no leak-o�.
Crack opening (left), crack length and speed (constant pumping case in red) (right).
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Figure 6.10: Radial model, oscillating pumping (amplitude Q∗, period 1s), no leak-o�.
Comparison with constant pumping case, crack opening (left), crack length and speed (right).
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Figure 6.11: Radial model, oscillating pumping (amplitude 0.5Q∗, period 1s), Carter leak-o�.
Crack opening (left), crack length and speed (constant pumping case in red) (right).
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Figure 6.12: Radial model, oscillating pumping (amplitude 0.5Q∗, period 1s), Carter leak-o�.
Comparison with constant pumping case, crack opening (left), crack length and speed (right).
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6.2 Oscillating leak-o� coe�cient

We consider here the case with oscillating leak-o� coe�cient, constant pumping rate and constant
toughness (for KGD and radial). The oscillating leak-o� coe�cient is de�ned by

kosccl (x) = kcl(1 + a sin(2πbx)), (6.14)

where with x we refer to the original, not normalised coordinate, and

a = −1 (6.15)

b = 1 (period of 1 meter). (6.16)

In this way, on a long interval, the average value of kosccl is exactly kcl. Again we chose to consider
extreme oscillations with amplitude kcl so that the e�ects on the fracture are evident as much as
possible.

PKN

We consider here PKN model with oscillating leak-o� coe�cient and we proceed similarly to what
we did previously in the case with oscillating pumping rate.
� In �gure 6.13 we plot crack opening length and speed.
� In �gure 6.14 we plot the relative di�erences of crack opening, length and speed.
From the plots it is possible to see that the crack opening oscillations are very small even for
small values of time and then decay in time. Di�erently to the oscillating pumping case, this
time the oscillations are more evident near the tip and less pronounced at the mouth. The crack
length oscillations are more evident for small values of time, but still decay rapidly becoming soon
negligible. The crack propagation speed instead has sharp variations that remain big also as time
increases.

Figure 6.13: PKN model, oscillating leak-o� (amplitude −kcl, period 1m).
Crack opening (left), crack length and speed (constant leak-o� case in red) (right).
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Figure 6.14: PKN model, oscillating leak-o� (amplitude −kcl, period 1m).
Comparison with constant leak-o� case, crack opening (left), crack length and speed (right).
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KGD

We consider here KGD model with oscillating leak-o� coe�cient and we proceed as done previously
for PKN.
� In �gures 6.15 and 6.16 we plot the results of the simulation.
Compared to the PKN model, the crack opening oscillations are now more evident also near the
crack mouth but still decay in time. The crack length oscillations are also stronger but decay in
time as well. The crack propagation speed has sharper variations and again they remain big when
time increases.

Figure 6.15: KGD model, oscillating leak-o� (amplitude −kcl, period 1m).
Crack opening (left), crack length and speed (constant leak-o� case in red) (right).
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Figure 6.16: KGD model, oscillating leak-o� (amplitude −kcl, period 1m).
Comparison with constant leak-o� case, crack opening (left), crack length and speed (right).
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Radial

We consider here radial model with oscillating leak-o� coe�cient and we proceed as done previously
for PKN and KGD.
� In �gures 6.17 and 6.18 we plot the results of the simulation.
This time the crack opening and crack length oscillations are small from the beginning but decay
slowly in time. The crack propagation speed has again sharp variations and they do not decay
when time increases.

Figure 6.17: Radial model, oscillating leak-o� (amplitude −kcl, period 1m).
Crack opening (left), crack length and speed (constant leak-o� case in red) (right).
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Figure 6.18: Radial model, oscillating leak-o� (amplitude −kcl, period 1m).
Comparison with constant leak-o� case, crack opening (left), crack length and speed (right).
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6.3 Oscillating toughness

We consider here the case with oscillating toughness, constant pumping rate, with or without
leak-o�. The oscillating toughness is de�ned by

Kosc
IC (x) = KIC(1 + a sin(2πbx)), (6.17)

where with x we refer to the original, not normalised coordinate, and

0.1 ≤ a ≤ 1 (6.18)

0.1 ≤ b ≤ 1 (period of 1 to 10 meters). (6.19)

We will do the simulations with di�erent values of amplitude and period to see how it a�ects the
results. With Kosc

IC de�ned in this way, on a long interval, the average value of Kosc
IC is exactly KIC .

KGD

We consider here KGD model with oscillating toughness and no leak-o� and we proceed similarly
to what we did previously in the other cases.
� In �gure 6.19 we plot crack opening, length and speed.
� In �gures 6.20, 6.21, 6.22 we plot the relative di�erences of crack opening, length and speed.
From the plots it is possible to see that the crack opening oscillations can be relevant and that
they are persistent in time. The same is true also for the crack length oscillations. The crack
propagation speed has sharp variations that are persistent in time as well.
In addition, comparing �gures 6.20 and 6.21, we note that changing the period of the oscillations
does not seem to in�uence the long time behaviour of the solution. Finally we see that if the
amplitude is about 0.1KIC or smaller, then the crack opening and length oscillations become
negligible. However the crack propagation speed has still sharp variations that persist when time
gets larger.
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Figure 6.19: KGD model, oscillating toughness (amplitude KIC , period 1m), no leak-o�.
Crack opening (left), crack length and speed (constant toughness case in red) (right).
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Figure 6.20: KGD model, oscillating toughness (amplitude KIC , period 10m), no leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Figure 6.21: KGD model, oscillating toughness (amplitude KIC , period 1m), no leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Figure 6.22: KGD model, oscillating toughness (amplitude 0.1KIC , period 1m), no leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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We consider now the case with Carter leak-o�, where we reduce the amplitude of the oscillations
to avoid crack stopping.
� In �gure 6.23 we plot crack opening, length and speed.
� In �gures 6.24, 6.25, 6.26 we plot the relative di�erences of crack opening, length and speed.
We can see how the presence of the leak-o� reduces the size of the oscillations compared to the
no leak-o� case. Indeed we can see that with an amplitude of 0.5KIC the oscillations are already
small. However, like in the no leak-o� case, the oscillations do not decay in time and changing
the period of the oscillations does not seem to in�uence the long time behaviour of the solution.
Finally, like in the no leak-o� case, the crack propagation speed has also sharp variations that
persist in time.

Figure 6.23: KGD model, oscillating toughness (amplitude KIC , period 1m), Carter leak-o�.
Crack opening (left), crack length and speed (constant toughness case in red) (right).
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Figure 6.24: KGD model, oscillating toughness (amplitude 0.5KIC , period 10m), Carter leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).

100 101 102 103
10-4

10-2

100

100 101 102 103
10-4

10-2

100

Figure 6.25: KGD model, oscillating toughness (amplitude 0.5KIC , period 1m), Carter leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Figure 6.26: KGD model, oscillating toughness (amplitude 0.1KIC , period 1m), Carter leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Radial

We consider here radial model with oscillating toughness and we proceed as done previously for
KGD.
� In �gures 6.27, 6.28, 6.29, 6.30 we plot the case with no leak-o�.
The results in the case of radial model are qualitatively similar to the ones in the case of KGD.
Therefore, also for radial, the crack opening and length oscillations can be relevant and are per-
sistent in time. The crack propagation speed has sharp variations that are also persistent in time.
Changing the period of the oscillations does not in�uence the long time behaviour of the solution
and, if the amplitude is about 0.1KIC or smaller, then the crack opening and length oscillations
are negligible.
� In �gures 6.31, 6.32, 6.33, 6.34 we plot the case with Carter leak-o�.
Again the presence of the leak-o� reduces the size of the oscillations compared to the no leak-o�
case. If the amplitude is about 0.5KIC or smaller, then the crack opening and length oscillations
are already small.

Figure 6.27: Radial model, oscillating toughness (amplitude KIC , period 1m), no leak-o�.
Crack opening (left), crack length and speed (constant toughness case in red) (right).
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Figure 6.28: Radial model, oscillating toughness (amplitude KIC , period 10m), no leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Figure 6.29: Radial model, oscillating toughness (amplitude KIC , period 1m), no leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Figure 6.30: Radial model, oscillating toughness (amplitude 0.1KIC , period 1m), no leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Figure 6.31: Radial model, oscillating toughness (amplitude KIC , period 1m), Carter leak-o�.
Crack opening (left), crack length and speed (constant toughness case in red) (right).
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Figure 6.32: Radial model, oscillating toughness (amplitude 0.5KIC , period 5m), Carter leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Figure 6.33: Radial model, oscillating toughness (amplitude 0.5KIC , period 1m), Carter leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Figure 6.34: Radial model, oscillating toughness (amplitude 0.1KIC , period 1m), Carter leak-o�.
Comparison with constant toughness case, crack opening (left), crack length and speed (right).
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Remarks

If the amplitude of the oscillations in toughness is large enough, then its e�ect can be relevant and
noticeable also for large values of time. Indeed we can see that the distance between the solutions
of the oscillating case and of the constant case does not change as time passes.
In practice this means that the solution with oscillating toughness corresponds to a solution with
a constant e�ective toughness, where this e�ective toughness is larger than the average of the
original oscillating toughness.
The part of the solution that is most a�ected by the oscillations is the area close to the crack tip
even though the oscillations are strong close to the crack mouth as well. The crack propagation
speed has sharp variations in correspondence to the variations of toughness: when the crack reaches
a tougher area it slows down and in�ates and then when it passes to a weaker area it propagates
rapidly and de�ates.
The long time e�ect does not depend on the period of the oscillations, while instead it depends
greatly on their amplitude and on the average value of the toughness itself. Indeed, if we look at
the limiting cases, 0 average toughness implies 0 amplitude (toughness must be positive) and 0
amplitude obviously produces no change. Therefore the maximum e�ect can be expected in cases
with big oscillations and large average toughness.
The presence of Carter leak-o� decreases the e�ect of the oscillation compared to the case with
impermeable rocks.

6.4 Conclusion

In this chapter we have run some simulations with oscillating parameters and we have seen the
e�ects on crack propagation.

• Oscillating pumping rate.
� The e�ect decays very rapidly in time becoming rapidly negligible.

• Oscillating leak-o� coe�cient.
� The e�ect is stronger than in the case with oscillating pumping rate.
� Despite this the oscillations of crack opening and length become rapidly negligible as well.
� However crack propagation speed has sharp variations also for large values of time.

• Oscillating toughness.
� The e�ect can be strong, in particular in case of big oscillations and large average toughness.
� The e�ect does not decay in time and corresponds to a higher "e�ective toughness".
� The long term e�ect does not depend on the period of the oscillations.



Chapter 7

Shear stress and energy release rate

The impact of shear stress on HF has been recently questioned in the case of a Newtonian �uid
for KGD [81] and radial [55] models. In these papers a modi�ed elasticity equation and a modi�ed
fracture propagation condition are proposed, we will implement them in our solver and make a
comparison with the classic versions of KGD and radial models.

7.1 Modi�ed models

KGD

We start from the modi�ed KGD model, see [81] for more details.

Elasticity

The elasticity equation is modi�ed to keep the shear stress into account and it takes the form

p(t, x)− σc =

� l(t)

−l(t)

(
1− 2ν

2π(1− ν)
τ(t, s)− E

4π(1− ν2)

∂w(t, s)

∂s

)
ds

s− x
, (7.1)

where τ represents the shear stress. We note that if we set τ = 0 we recover the classic KGD
formulation seen previously. The shear stress can be expressed in terms of the crack opening and
the derivative of the pressure as

τ(t, x) = −w
2

∂p

∂x
, (7.2)

where the sign is chosen accordingly to the formulation of the modi�ed elasticity equation. Taking
symmetry into account the equation can be rewritten as

p(t, x)− σc =

� l(t)

0

(
1− 2ν

π(1− ν)
τ(t, s)− E

2π(1− ν2)

∂w(t, s)

∂s

)
I(x, s)ds, (7.3)

where I(x, s) is like in (2.84). It is possible to invert the integral operator obtaining

� l(t)

x

(
1− 2ν

π(1− ν)
τ(t, s)− E

2π(1− ν2)

∂w(t, s)

∂s

)
ds =

4

π2

� l(t)

0

(p(t, s)− σc)J (x, s)ds, (7.4)
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where J (x, s) is like in (2.86). So we can express w as a function of τ and p

w(t, x) = ks

� x

l(t)

τ(t, s)ds+ ke

� l(t)

0

(p(t, s)− σc)J (x, s)ds, (7.5)

where the constant ke is like in (2.88) and

ks =
2(1 + ν)(1− 2ν)

E
. (7.6)

Finally w can be written as

w(t, x) = ks

� x

l(t)

τ(t, s)ds+ ke

� l(t)

0

∂p(t, s)

∂s
K(x, s)ds+ ke

√
l2(t)− x2

� l(t)

0

p(t, s)− σc√
l2(t)− s2

ds, (7.7)

where K(x, s) is like in (2.90).

Fracture propagation

In [81], an asymptotic analysis of the modi�ed KGD model has been done resulting in

w(t, x) = w1,0(t)(l(t)− x)
1
2 + h.o.t. x→ l(t) (7.8)

τ(t, x) = τ1,0(t)(l(t)− x)−
1
2 + h.o.t. x→ l(t). (7.9)

As a consequence, from the study of the stresses near the crack tip the authors found that the
leading asymptotic coe�cient of w must satisfy

w1,0(t) = ke

√
π

2
KI +

4(1 + ν)

E
τ1,0(t). (7.10)

In addition they derived also a modi�ed fracture propagation condition to keep the shear stress
into account

K2
IC = K2

I + 4(1− ν)KFKI = K2
I + 2

√
2πτ1,0(t)KI . (7.11)

Now we want to express these two conditions like in the classic KGD model. To do so we solve
(7.11) for KI and we get

KI = −
√

2πτ1,0(t)±
√

2πτ 2
1,0(t) +K2

IC , (7.12)

where we take the solution with the plus sign, because it generalises the classic case. If we substitute
KI in w0 we get

w1,0(t) = ke

√
π

2

√
K2
IC + 2πτ 2

1,0(t)− 2ksτ1,0(t), (7.13)

but from asymptotic analysis of (7.7) we also have that

w1,0(t) = ke
√

2l(t)

� l(t)

0

p(t, s)− σc√
l2(t)− s2

ds− 2ksτ1,0(t). (7.14)

Therefore equating these last two formulas we get the modi�ed condition on the pressure in the
form √

K2
IC + 2πτ 2

1,0(t) = 2

√
l(t)

π

� l(t)

0

p(t, s)− σc√
l2(t)− s2

ds. (7.15)

We note that if we set τ1,0 = 0 we recover the classic formulation of KGD.
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Normalisation

We normalise the model in the same way we have done in the classic case, but in addition this
time we have the shear stress

τ̃(t̃, x̃) = keτ(t, x), τ̃1,0(t̃) =
ke√
l(t)

τ1,0(t), k̃s =
ks
ke
. (7.16)

We notice that for standard materials ν ∈ [0, 1
2
] therefore we have that k̃s = π

4
1−2ν
1−ν ∈ [0, π

4
]. We

can now rewrite the modi�ed equations in the normalised form, while all the others remain the
same as in the classic case.
� elasticity equation

w̃(t̃, x̃) = k̃sL(t̃)

� x̃

1

τ̃(t̃, s̃)ds+ L(t̃)

� 1

0

∂p̃(t̃, s̃)

∂s̃
K̃(x̃, s̃)ds̃+

√
K̃2
IC +

π2

2
L(t̃)τ̃ 2

1,0(t̃)

√
L(t̃)
√

1− x̃2,

(7.17)

where K̃(x̃, s̃) is like in (2.104).
� fracture propagation√

K̃2
IC +

π2

2
L(t̃)τ̃ 2

1,0(t̃) =

√
L(t̃)

� 1

0

p̃(t̃, s̃)√
1− s̃2

ds̃. (7.18)

� shear stress

τ̃(t̃, x̃) = −w̃(t̃, x̃)

2L(t̃)

∂p̃

∂x̃
(t̃, x̃) =

1

2

q̃(t̃, x̃)

w̃2(t̃, x̃)
. (7.19)

From here on we will only consider the normalised modi�ed KGD problem and we will omit the
∼ symbol for simplicity.

Asymptotics

As remarked in [81], the asymptotic behaviour at the crack tip of the modi�ed model does not
depend on toughness any longer and it corresponds to what happens in the case of the classic KGD
model with KIC > 0 and n = 1.
However it can be seen that if the pumping rate does not change dramatically in time, then, when
time goes to in�nity, the e�ect of shear stress becomes negligible. This means that the long time
asymptote is the same as for the classic KGD. Therefore if KIC = 0, then the long time asymptote
of the modi�ed model is the same of the one of the classic model and as a consequence at the crack
tip it has a di�erent behaviour from the rest of the solution.
We add here the asymptotic behaviour of the shear stress.
Crack mouth, when (x→ 0+) we have:

τ(t, x) = τ0,0(t) + τ0,1(t)x+ h.o.t. . (7.20)

Crack tip, when (x→ 1−) we have:

τ(t, x) = τ1,0(t)(1− x)−
1
2 + τ1,1(t) + h.o.t. . (7.21)
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Remarks

In the modi�ed KGD model it is possible to �nd a self-similar solution like in the classic case, but
this time only in the exponential form. It is useful for testing purposes and it has been studied in
[81].
We will also consider a partially modi�ed version of the model, setting k̃s to 0 but keeping the
modi�ed fracture propagation condition. The asymptotic behaviour of the solution remains the
same as in the case of the fully modi�ed model and again it is possible to �nd a self-similar solution
only in exponential form.

Radial

We discuss here the modi�ed radial model, see [55] for more details, the procedure is basically the
same as for KGD case.

Elasticity

Similarly to KGD, the elasticity equation is modi�ed to keep the shear stress into account and it
takes the form

p(t, r)− σc =

� l(t)

0

(
1− 2ν

π(1− ν)
τ(t, s)− E

2π(1− ν2)

∂w(t, s)

∂s

)
I(r, s)ds, (7.22)

where τ represents the shear stress and I(r, s) is like in (2.139). We observe that if we set τ = 0
we recover the classic formulation of radial seen previously. The shear stress can be expressed in
terms of the crack opening and the derivative of the pressure as

τ(t, r) = −w
2

∂p

∂r
, (7.23)

where the sign is chosen accordingly to the formulation of the modi�ed elasticity equation. It is
possible to invert the integral operator and express w as a function of τ and p

w(t, r) = ks

� r

l(t)

τ(t, s)ds+ ke

� l(t)

0

(p(t, s)− σc)J (r, s)ds, (7.24)

where J (r, s) is like in (2.141), the constant ke is like in (2.143) and

ks =
2(1 + ν)(1− 2ν)

E
. (7.25)

Finally w can be written as

w(t, r) = ks

� r

l(t)

τ(t, s)ds+ ke

� l(t)

0

∂p(t, s)

∂s
K(r, s)ds+ ke

√
l2(t)− r2

� l(t)

0

p(t, s)− σc√
l2(t)− s2

s

l(t)
ds,

(7.26)

where K(r, s) is like in (2.145).
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Fracture propagation

Similarly to KGD, the asymptotic behaviour of the modi�ed radial model is

w(t, r) = w1,0(t)(l(t)− r)
1
2 + h.o.t. x→ l(t) (7.27)

τ(t, r) = τ1,0(t)(l(t)− r)−
1
2 + h.o.t. x→ l(t), (7.28)

the leading asymptotic coe�cient of w must satisfy

w1,0(t) = ke

√
π

2
KI +

4(1 + ν)

E
τ1,0(t) (7.29)

and we have a modi�ed fracture propagation condition

K2
IC = K2

I + 4(1− ν)KFKI = K2
I + 2

√
2πτ1,0(t)KI . (7.30)

We observe that if we set τ1,0 = 0 in the last two equations we recover the results of the classic
formulation of radial. Proceeding like in KGD we get the modi�ed condition on the pressure in
the form √

K2
IC + 2πτ 2

1,0(t) = 2

√
l(t)

π

� l(t)

0

p(t, s)− σc√
l2(t)− s2

s

l(t)
ds. (7.31)

Normalisation

We normalise the model in the same way we have done in the classic case, but in addition this
time we have the shear stress

τ̃(t̃, r̃) = keτ(t, r), τ̃1,0(t̃) =
ke√
l(t)

τ1,0(t), k̃s =
ks
ke
. (7.32)

We observe that for standard materials ν ∈ [0, 1
2
] therefore we have that k̃s = π

4
1−2ν
1−ν ∈ [0, π

4
]. We

can now rewrite the modi�ed equations in the normalised form, while all the others remain the
same as in the classic case.
� elasticity equation

w̃(t̃, r̃) = k̃sL(t̃)

� r̃

1

τ̃(t̃, s̃)ds+ L(t̃)

� 1

0

∂p̃(t̃, s̃)

∂s̃
K̃(r̃, s̃)ds̃+

√
K̃2
IC +

π2

2
L(t̃)τ̃ 2

1,0(t̃)

√
L(t̃)
√

1− r̃2,

(7.33)

where K̃(r̃, s̃) is like in (2.158).
� fracture propagation√

K̃2
IC +

π2

2
L(t̃)τ̃ 2

1,0(t̃) =

√
L(t̃)

� 1

0

p̃(t̃, s̃)s̃√
1− s̃2

ds̃. (7.34)

� shear stress

τ̃(t̃, r̃) = −w̃(t̃, r̃)

2L(t̃)

∂p̃

∂r̃
(t̃, r̃) =

1

2

q̃(t̃, r̃)

w̃2(t̃, r̃)
. (7.35)

From here on we will only consider the normalised modi�ed radial problem and we will omit the
∼ symbol for simplicity.
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Asymptotics

The asymptotic behaviour of the modi�ed radial model at the crack tip is the same as the one
of the modi�ed KGD, therefore what said previously for the modi�ed KGD holds also for the
modi�ed radial. The asymptotic behaviour at the crack mouth instead this time is di�erent.
Crack mouth, when (r → 0+) we have:

τ(t, r) = τ0,0(t)r−1 + τ0,1(t) + h.o.t. . (7.36)

We note that in this way the asymptotic behaviour of τ is not compatible with the asymptotic
behaviour of w coming from the classic radial model. For this reason they should be both corrected
to match together, resulting in a logarithmic singularity of the crack opening at the crack mouth.
In order to avoid this problem and considering that the e�ect of shear stress is not important close
to the crack mouth, instead than using the de�nition in (7.35), we will de�ne the shear stress as

τ(t, r) = −w(t, r)

2L(t)

∂p

∂r
(t, r)r =

1

2

q(t, r)

w2(t, r)
r. (7.37)

In this way the behaviour of the shear stress at the crack tip is not modi�ed, while at the crack
mouth it becomes

τ(t, r) = τ0,0(t) + τ0,1(t)r + h.o.t. . (7.38)

Therefore now the asymptotic behaviour of τ matches with the asymptotic behaviour of w coming
from the classic radial model.

Remarks

Similarly to KGD, in the modi�ed radial model it is possible to �nd a self-similar solution only in
exponential form.
We will also consider a partially modi�ed version of the model, setting k̃s to 0 but keeping the
modi�ed fracture propagation condition. The asymptotic behaviour of the solution remains the
same as in the case of the fully modi�ed model and again it is possible to �nd a self-similar solution
only in exponential form.

7.2 Numerical tests

We test here the modi�ed KGD and radial models comparing them to the classic versions. We
consider both the fully modi�ed models (shear stress and fracture propagation condition) and the
partially modi�ed models (only fracture propagation condition), both with and without leak-o�.
We run the simulations with constant in�ow and with constant toughness, using the following
parameters (the di�erence from the previous chapter is only the time interval):

E

1− ν2
= 3 · 1010 Pa, ν = .25, KIC = 1.3 · 106 Pa

√
m, (7.39)

kcl = 5 · 10−5 m/
√
s, µf = 10−3 Pa s, Q∗ = 6 · 10−3 m3/s, (7.40)

h = 30 m (KGD), tstart = 10−6s, tend = 104s. (7.41)
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As a consequence in the normalised variables we get approximately

K̃IC = 10−4, k̃s = .5, kcl = 10−10, (7.42)

q̃∗ = 10−16 (KGD), 10−15 , (radial), t̃start = 106, t̃end = 1016. (7.43)

As for the initial conditions, we will start the simulations from a very small crack, of virtually zero
length and zero opening.
For the comparison we will measure the relative di�erence between the solution generated using
the classic model and the one coming from the modi�ed versions

δl =

∣∣∣∣ lmod(t)− lcla(t)lcla(t)

∣∣∣∣ , δv =

∣∣∣∣∣ dldt
mod

(t)− dl
dt

cla
(t)

dl
dt

cla
(t)

∣∣∣∣∣ (7.44)

δwmou =

∣∣∣∣wmod(t, 0)− wcla(t, 0)

wcla(t, 0)

∣∣∣∣ , δwmid =

∣∣∣∣∣wmod(t, l2)− wcla(t, l
2
)

wcla(t, l
2
)

∣∣∣∣∣ , δwtip =

∣∣∣∣wmod(t, l)− wcla(t, l)wcla(t, l)

∣∣∣∣ .
(7.45)

Here fmod stands for a variable taken from the solution of the modi�ed model and f cla for a variable
taken from the solution of the classic model. The tests have been done asking an error smaller
than 10−6.

KGD

We consider here the fully and partially modi�ed KGD models. We plot the relative di�erence
between the two modi�ed solutions and the solution coming from the classic model.
� In �gure 7.1 we consider the fully modi�ed model with no leak-o�.
� In �gure 7.2 we consider the fully modi�ed model with Carter leak-o�.
� In �gure 7.3 we consider the partially modi�ed model with no leak-o�.
� In �gure 7.4 we consider the partially modi�ed model with Carter leak-o�.
In the plots on the left we have the relative di�erence of the crack opening, in those on the right
we have the relative di�erence of crack length and crack propagation speed.
From the numerical simulations we can see that, for the values of the physical parameters that we
have used, the e�ects of the shear stress and of the modi�ed fracture propagation condition are
very small and visible only for very small values of time. In practice they are outside HF practical
purposes and of the range of validity of the model. The di�erence is more noticeable in the case of
the fully modi�ed model and in the case of no leak-o�. The most in�uenced part of the solution
is the area of w near the crack tip, while crack length and propagation speed are less a�ected.
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Figure 7.1: Fully modi�ed KGD model against classic with no leak-o� (tolerance 10−6).
Comparison of the crack opening (left), crack length and speed (right).
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Figure 7.2: Fully modi�ed KGD model against classic with Carter leak-o� (tolerance 10−6).
Comparison of the crack opening (left), crack length and speed (right).
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Figure 7.3: Partially modi�ed KGD model against classic with no leak-o� (tolerance 10−6).
Comparison of the crack opening (left), crack length and speed (right).
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Figure 7.4: Partially modi�ed KGD model against classic with Carter leak-o� (tolerance 10−6).
Comparison of the crack opening (left), crack length and speed (right).
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Radial

We consider here the fully and partially modi�ed radial models and proceed like previously in the
KGD case.
� In �gure 7.5 we consider the fully modi�ed model with no leak-o�.
� In �gure 7.6 we consider the fully modi�ed model with Carter leak-o�.
� In �gure 7.7 we consider the partially modi�ed model with no leak-o�.
� In �gure 7.8 we consider the partially modi�ed model with Carter leak-o�.
The simulations for the radial model show similar results to the KGD case. Also for the radial
model, for the values of the physical parameters that we have used, the e�ects of shear stress and
of the modi�ed fracture propagation condition are very small and visible only for very small values
of time.

Figure 7.5: Fully modi�ed radial model against classic with no leak-o� (tolerance 10−6).
Comparison of the crack opening (left), crack length and speed (right).
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Figure 7.6: Fully modi�ed radial model against classic with Carter leak-o� (tolerance 10−6).
Comparison of the crack opening (left), crack length and speed (right).
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Figure 7.7: Partially modi�ed radial model against classic with no leak-o� (tolerance 10−6).
Comparison of the crack opening (left), crack length and speed (right).
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Figure 7.8: Partially modi�ed radial model against classic with Carter leak-o� (tolerance 10−6).
Comparison of the crack opening (left), crack length and speed (right).
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7.3 Conclusion

In this chapter we have run some simulations with the modi�ed KGD and radial models that
consider the e�ects of �uid induced shear stress at the fracture walls.

• For the values of the problem that we have used in the tests, the e�ect of shear stress is very
small. Indeed the e�ect is barely visible for small values of time and then decays rapidly.

• A higher pumping rate and a more viscous �uid would make the e�ect more relevant, further
tests can be done to �nd a threshold.

• An advantage of the modi�ed model is that the asymptotic behaviour of the solution is
simpler because it does not change when KIC = 0.

• However when KIC = 0 and pumping rate does not change dramatically in time, the long
time asymptote has still the asymptotic behaviour of the classic viscosity solution. How far
in time the transition in the asymptotics starts, depends again on the input parameters.
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Chapter 8

Future work

8.1 Models

Fluid �ow

We have treated the case where the �uid is modelled as power-law. More in general, for a gen-
eralised Newtonian �uid, Poiseuille equation cannot be expressed in a closed form. It is however
possible to write it as

∂p

∂x
= −f

( q̄

w̄2

) q̄

w̄3
, (8.1)

where f is a function that depends on the �uid model and can be approximated numerically.
In particular, in the case of a Carreau �uid, the behaviour at zero and in�nite shear rate is like
that of a Newtonian �uid. Therefore if µc,0 and µc,∞ are �nite and greater than 0, then also f
is always �nite and greater than 0. This means that if we use the Carreau �uid model in HF,
the resulting solution would have the same asymptotic behaviour of the case with a Newtonian
�uid. Therefore once one has approximated the function f , the Carreau �uid model can be easily
implemented in our solver with only small modi�cations.

Leak-o�

The same thing just said for �uid �ow can be applied to leak o�. For a generalised Newtonian
�uid, a Carter-like equation cannot be expressed in a closed form. It is however possible to write
it as

q̄l =
g(t− t0(x))√
t− t0(x)

, (8.2)

where g is a function that depends on the �uid model and can be approximated numerically.
For the same reasons stated above, if we use the Carreau �uid model for leak-o� and µc,0 and µc,∞
are �nite and greater than 0, then also g is always �nite and greater than 0. As a consequence,
with a Carreau �uid, the solution of the problem would have the same asymptotic behaviour of
the case with a Newtonian �uid. Therefore once one has approximated the function g, the Carreau
�uid model can be easily implemented in our solver with only small modi�cations.
It must be noted however that there is still some debate in the scienti�c community on how non-
Newtonian �ow through porous media should be modelled [8]. As a consequence there is not
an agreed unique way to compute mathematically the function g. For this reason an alternative
approach could be instead approximating this function directly from physical experiments.

133
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8.2 Numerical methods

Approximation

We have seen in chapter 3 how to increase the regularity of a function at the boundary to get better
results in its approximation. Yet it is possible to go further and, with a suitable change of variable,
make it become C∞ and possibly get geometric convergence. To build such a transformation it is
su�cient to consider a function such that its derivative has compact support, as we will see more
in detail below.

Asymptotics on one side

For f with irregular behaviour on the right as in (3.117), we can de�ne g as

g(y) =
f(s(y))

w(y)
, where (8.3)

s(y) = (1 + e2) tanh

(
2

1− y

)
− e2 (8.4)

w(y) = exp

(
− 4α0

1− y

)
, (8.5)

therefore f(x) = g(s−1(x))w(s−1(x)) and the asymptotic behaviour of g is

g(y) = a0 +O

(
exp

(
−4 min(α1 − α0, 1)

(1− y)

))
y → 1. (8.6)

At point 1 all the derivatives of g are sent to 0 and g is C∞.

Asymptotics on both sides

For f with irregular behaviour at both endpoints as in (3.122,3.123), we can de�ne g as

g(y) =
f(s(y))

w(y)
, where (8.7)

s(y) = tanh

(
2

1− y
− 2

1 + y

)
(8.8)

w(y) = exp

(
− 4α0

1− y

)
exp

(
− 4β0

1 + y

)
, (8.9)

therefore f(x) = g(s−1(x))w(s−1(x)) and the asymptotic behaviour of g is

g(y) = â0 + â1(1− y) + â2(1− y)2 + . . . y → 1 (8.10)

g(y) = b̂0 + b̂1(1 + y) + b̂2(1 + y)2 + . . . y → −1. (8.11)

This means that at points -1 and 1 g is now C∞.
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Approximation

We can now e�ectively approximate g with a polynomial, obtaining

f(x) ≈ pn(s−1(x))w(s−1(x)), (8.12)

a polynomial pn composed with a smooth change of variables, multiplied by a weight function.
The polynomial pn can be computed interpolating the function g(y) at the Chebyshev nodes yi,
that in the original variable become xi = s(yi).

Remarks

The use of the hyperbolic tangent can be found for example in [72, 73], to perform de�nite integrals
with singularities moving them to an in�nite domain. In those papers other similar transformations
are presented as well. In our case we chose the simplest transformation that goes from [−1, 1] to
[−1, 1] such that its derivative has compact support in [−1, 1].

Inde�nite integration

The hyperbolic tangent change of variable can be used also for the integration to get a C∞ function
and possibly geometric convergence.

Asymptotics on both sides

For simplicity we will consider only the case with bad asymptotic behaviour on both sides, the
case of one side can be derived similarly. For f as in (3.122,3.123), we can de�ne g as

g(y) =
f(s(y))s′(y)

w(y)
, where (8.13)

s(y) = tanh

(
2

1− y
− 2

1 + y

)
(8.14)

s′(y) =
4(1 + y2)

(1− y2)2
sech

(
2

1− y
− 2

1 + y

)2

(8.15)

w(y) =
exp

(
−4(α0+1)

1−y

)
(1− y)2

exp
(
−4(β0+1)

1+y

)
(1 + y)2

, (8.16)

therefore
�
f(x)dx =

�
g(y)w(y)dy and the asymptotic behaviour of g is

g(y) = â0 + â1(1− y) + â2(1− y)2 + . . . y → 1 (8.17)

g(y) = b̂0 + b̂1(1 + y) + b̂2(1 + y)2 + . . . y → −1. (8.18)

This means that at points -1 and 1 g is now C∞.

Approximation

We can now e�ectively approximate g with a polynomial, obtaining�
f(x)dx ≈

�
pn(y)w(y)dy, (8.19)
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the integral of a polynomial multiplied for a weight function. As in the previous section the
polynomial pn can be computed interpolating the function g(y) at the Chebyshev nodes yi, that
in the original variable become xi = s(yi).

Integral operator

In this case we can split the interval in two in x0 and then apply the change of variables de�ned
above to the two semi intervals. We can de�ne the function g

g(y) = f(s(y)), where (8.20)

s(y) =


(

tanh
(

1−y0
y−y0 −

1−y0
1−y

)
+ 1
)
y0−1

2
+ 1, y > y0 = x0(

tanh
(

1+y0
y0−y −

1+y0
1+y

)
+ 1
)

1+y0
2
− 1, y < y0 = x0,

(8.21)

therefore the asymptotic behaviour of g is

g(y) = exp

(
−2α0

1− y0

1− y

)
(â0 + â1(1− y) + â2(1− y)2 + . . .) y → 1 (8.22)

g(y) = ĉ0 + exp

(
−2

1− y0

y − y0

)
(ĉr0(y − y0)−1 + ĉr1 + ĉr2(y − y0) + . . .) y → y+

0 (8.23)

g(y) = ĉ0 + exp

(
−2

1 + y0

y0 − y

)
(ĉl0(y0 − y)−1 + ĉl1 + ĉl2(y0 − y) + . . .) y → y−0 (8.24)

g(y) = exp

(
−2β0

1 + y0

1 + y

)
(b̂0 + b̂1(1 + y) + b̂2(1 + y)2 + . . .) y → −1. (8.25)

Finally we consider the integral

� 1

−1

f(x)dx =

� 1

−1

g(y)s′(y)dy =

� 1

−1

h(y)dy, (8.26)

where h

h(z) = g(y)s′(y) (8.27)

and its asymptotic behaviour is

h(y) = exp

(
−2(α0 + 1)

1− y0

1− y

)
(ā0(1− y)−2 + ā1(1− y)−1 + ā2 + . . .) y → 1 (8.28)

h(y) = exp

(
−2

1− y0

y − y0

)
(c̄r0(y − y0)−2 + c̄r1(y − y0)−1 + c̄r2 + . . .) y → y+

0 (8.29)

h(y) = exp

(
−2

1 + y0

y0 − y

)
(c̄l0(y0 − y)−2 + c̄l1(y0 − y)−1 + c̄l2 + . . .) y → y−0 (8.30)

h(y) = exp

(
−2(β0 + 1)

1 + y0

1 + y

)
(b̄0(1 + y)−2 + b̄1(1 + y)−1 + b̄2 + . . .) y → −1. (8.31)

This means that at points -1, y0 and 1 h is now C∞.
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Approximation

We can now e�ectively approximate h with a polynomial, obtaining
� 1

−1

f(x)dx ≈
� 1

−1

pn(y)dy. (8.32)

Again the polynomial pn can be computed interpolating the function h(y) at the Chebyshev nodes
yi, that in the original variable become xi = s(yi).
In alternative we can also consider splitting the integral in two parts, that might give better results
because of the asymptotic behaviour of h in y0. In this case we interpolate h with two di�erent
polynomials on the two sub-intervals, obtaining

� 1

−1

f(x)dx ≈
� y0

−1

pln(y)dy +

� 1

y0

prn(y)dy. (8.33)

Integral of a weighted polynomial

The integral of a weighted polynomial in the case of the hyperbolic tangent change of variables
can be performed using the same approach adopted with the beta change of variable.

Asymptotics on one side

We want to compute the integral

F (x) =

�
pn(x)w(x)dx, where w(x) =

exp(− α
1−x)

(1− x)2
. (8.34)

It is possible to express F (x) as

F (x) = Pn−1(x) exp

(
− α

1− x

)
+ cg(x), (8.35)

where

g(x) =

� x

1

(1− x)w(x)dx (8.36)

and Pn−1(x) is a polynomial of degree n− 1. Then if we di�erentiate we get

F ′(x) =
dPn−1(x)

dx
exp

(
− α

1− x

)
− Pn−1(x) exp

(
− α

1− x

)
α

(1− x)2
+ cg′(x) (8.37)

=

(
dPn−1(x)

dx
(1− x)2 − αPn−1(x) + c(1− x)

)
w(x) (8.38)

=qn(x)w(x), (8.39)

where qn(x) is a polynomial of degree n. Therefore we need to �nd Pn−1(x) and c such that
qn(x) = pn(x). We start writing Pn−1(x) in terms of the Chebyshev basis of �rst kind and pn(x)
in terms of the Chebyshev basis of second kind

Pn(x) =
n∑
i=1

aiTi−1(x) and pn(x) =
n∑
i=0

biUi(x). (8.40)
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Using the properties of the Chebyshev polynomials it can be seen that

d(Ti(x) exp
(
− α

1−x

)
)

dx
=

(
i

4
Ui+1(x)−

(
i+

α

2

)
Ui(x) +

3

2
iUi−1(x)−

(
i− α

2

)
Ui−2(x) +

i

4
Ui−3(x)

)
w(x)

(8.41)

d(T2(x) exp
(
− α

1−x

)
)

dx
=

(
1

2
U3(x)−

(
2 +

α

2

)
U2(x) + 3U1(x)−

(
2− α

2

)
U0(x)

)
w(x) (8.42)

d(T1(x) exp
(
− α

1−x

)
)

dx
=

(
1

4
U2(x)−

(
1 +

α

2

)
U1(x) +

5

4
U0(x)

)
w(x) (8.43)

d(T0(x) exp
(
− α

1−x

)
)

dx
= −αU0(x)w(x) (8.44)

and in addition we have that

dg(x)

dx
=

(
−1

2
U1(x) + U0(x)

)
w(x). (8.45)

Now if we set a0 = c, then we have a relation between ai and bi in terms of the linear system

d1,0 d2,0 d3,0 d4,0 d5,0

. . . . . . . . . . . . . . .

d1,n−4 d2,n−4 d3,n−4 d4,n−4 d5,n−4

d1,n−3 d2,n−3 d3,n−3 d4,n−3

d1,n−2 d2,n−2 d3,n−2

d1,n−1 d2,n−1

d1,n




a0

a1
...
an

 =


b0

b1
...
bn

 , (8.46)

that has an upper triangular band matrix and can be solved in O(n) operations using back sub-
stitution. Finally g(x) can be expressed in the form of the exponential integral function

g(x) = Ei

(
− α

1− x

)
, (8.47)

that provides fast and accurate computation.

We note that when α = 0 the term a1T0(x) is sent to 0 after di�erentiation, therefore in this
case it must be substituted by a1

1
1−x , and we obtain

d
(

1
1−x

)
dx

= U0(x)w(x). (8.48)

In addition when α = 0 for g(x) we obtain the simpler formula

g(x) = − ln(1− x) (8.49)

Asymptotics on both sides

We want to compute the integral

F (x) =

�
pn(x)w(x)dx, where w(x) =

exp(− α
1−x)

(1− x)2

exp(− β
1+x

)

(1 + x)2
=

exp(− α
1−x −

β
1+x

)

(1− x2)2
. (8.50)
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It is possible to express F (x) as

F (x) = Pn−3(x) exp

(
− α

1− x
− β

1 + x

)
+ c3g3(x) + c2g2(x) + c1g1(x) + c0g0(x), (8.51)

where

g3(x) =

� x

1

T3(x)w(x)dx (8.52)

g2(x) =

� x

1

T2(x)w(x)dx (8.53)

g1(x) =

� x

1

T1(x)w(x)dx (8.54)

g0(x) =

� x

1

T0(x)w(x)dx (8.55)

and Pn−3(x) is a polynomial of degree n− 3. Then if we di�erentiate we get

F ′(x) =
dPn−3(x)

dx
exp

(
− α

1− x
− β

1 + x

)
(8.56)

− Pn−1(x) exp

(
− α

1− x
− β

1 + x

)(
α

(1− x)2
− β

(1 + x)2

)
(8.57)

+ c3g
′
3(x) + c2g

′
2(x) + c1g

′
1(x) + c0g

′
0(x) (8.58)

=

(
dPn−3(x)

dx
(1− x)2(1 + x)2 − Pn−3(x)(α(1 + x)2 − β(1− x)2) (8.59)

+ c3T3(x) + c2T2(x) + c1T1(x) + c0T0(x)

)
w(x) (8.60)

=qn(x)w(x), (8.61)

where qn(x) is a polynomial of degree n. Therefore we need to �nd Pn−3(x) and c3, c2, c1, c0 such
that qn(x) = pn(x). We start writing Pn−3(x) and pn(x) in terms of the Chebyshev basis of �rst
kind

Pn(x) =
n∑
i=4

aiTi−3(x) and pn(x) =
n∑
i=0

biTi(x), (8.62)

where we note that in the sum we do not use the term a3T0(x). Using the properties of the
Chebyshev polynomials it can be seen that
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d(Ti(x) exp
(
− α

1−x −
β

1+x

)
)

dx
=

(
i

8
Ti+3(x)− α− β

4
Ti+2(x)−

(
α + β +

3

8
i

)
Ti+1(x)− 3

2
(α− β)Ti(x)

(8.63)

−
(
α + β − 3

8
i

)
Ti−1(x)− α− β

4
Ti−2(x)− i

8
Ti−3(x)

)
w(x) (8.64)

d(T2(x) exp
(
− α

1−x −
β

1+x

)
)

dx
=

(
1

4
T5(x)− α− β

4
T4(x)−

(
α + β +

3

4

)
T3(x)− 3

2
(α− β)T2(x)

(8.65)

−
(
α + β − 1

2

)
T1(x)− α− β

4
T0(x)

)
w(x) (8.66)

d(T1(x) exp
(
− α

1−x −
β

1+x

)
)

dx
=

(
1

8
T4(x)− α− β

4
T3(x)−

(
α + β +

1

2

)
T2(x)− 7

4
(α− β)T1(x)

(8.67)

−
(
α + β − 3

8

)
T0(x)

)
w(x) (8.68)

d(T0(x) exp
(
− α

1−x −
β

1+x

)
)

dx
=

(
− α− β

2
T2(x)− 2 (α + β)T1(x)− 3

2
(α− β)T0(x)

)
w(x) (8.69)

and in addition we have that

dg3(x)

dx
= T3(x)w(x) (8.70)

dg2(x)

dx
= T2(x)w(x) (8.71)

dg1(x)

dx
= T1(x)w(x) (8.72)

dg0(x)

dx
= T0(x)w(x). (8.73)

Then we set a0 = c0, a1 = c1, a2 = c2, a3 = c3, so we have now a relation between ai and bi in terms
of the linear system

d1,0 d2,0 d3,0 d4,0 d5,0 d6,0 d7,0

. . . . . . . . . . . . . . . . . . . . .

d1,n−6 d2,n−6 d3,n−6 d4,n−6 d5,n−6 d6,n−6 d7,n−6

d1,n−5 d2,n−5 d3,n−5 d4,n−5 d5,n−5 d6,n−5

d1,n−4 d2,n−4 d3,n−4 d4,n−4 d5,n−4

d1,n−3 d2,n−3 d3,n−3 d4,n−3

d1,n−2 d2,n−2 d3,n−2

d1,n−1 d2,n−1

d1,n




a0

a1
...
an

 =


b0

b1
...
bn

 , (8.74)

that has an upper triangular band matrix and can be solved in O(n) operation using back substi-
tution. Finally, the functions gi(x) can be computed numerically splitting the interval [−1, 1] in
two halves and then using the result of the previous case (asymptotics on one side) to integrate
them in [−1, 0] and [0, 1].



Chapter 9

Conclusion

The aim of this work was to build a solver for the three classic 1D models that is able to provide
a fast and accurate solution in every reasonable condition. In addition we wanted to build an
algorithm that is adaptive in time and space, to be able to keep the error under control at every
step while at the same time minimising the amount of computations required.

We started from the main points of:

� normalisation of the problem to pass from a moving to a �xed boundary
� appropriate treatment of the asymptotic behaviour of the solution at the boundary
� modi�ed formulation of the elasticity integral operator.

Particular attention was required to deal with the irregular asymptotic behaviour of the solution
at the crack tip and at the crack mouth. Moreover we had to take into account that the asymptotic
behaviour of the solution can change when moving through di�erent regimes (toughness or viscos-
ity and storage or leak-o�). Therefore the function spaces used to approximate the solution had to
be carefully chosen in a way that they could provide good results in all the situations. Additional
di�culties also had to be overcome in KGD and radial models because of the evaluation of the
elasticity integral operators.

Despite these complications, our aim was to use high order approximation to obtain fast con-
vergence and accurate results with few evaluation points. To do so we proceeded with:

� a smoothing transformation to make the solution more regular at the boundary
� approximation through weighted polynomial interpolation on the Chebyshev nodes
� an additional smoothing transformation to evaluate the elasticity integral operator
� accurate evaluation of the kernels through the use of symmetric elliptic integrals.

Another objective was to build a solver adaptive in space and time to save machine computations,
while keeping the error under control. For this purpose, at every time step we had to use a spacial
mesh as small as possible and we had to choose the time step itself dynamically depending on the
behaviour of the solution. We obtained this using the following techniques:

� multigrid approach to save time and keep the error under control
� implicit Runge Kutta method for time discretisation, that has a high order while remaining
stable for sti� problems.
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Using all these techniques combined together allowed us to build a solver that met our goals.

• We have built a space-time adaptive algorithm that works for all classic 1D HF models, with
or without leak-o�. It can also include the e�ects of �uid induced shear stress.

• The solver works well in all the regimes (viscosity, toughness, storage, leak-o�) and during
the transition among them.

• We have tested the algorithm against all known semi-analytical solutions to asses its correct-
ness.

• The algorithm has proved to be very e�ective. It can provide very accurate results with the
use of few approximation points even in the hardest cases (small toughness for instance).

• We have analysed the e�ect of the oscillation of di�erent physical parameters. In particular
oscillating toughness can have relevant e�ects on the solution.

• We have investigated the impact of the shear stress. Further tests with di�erent values of
the parameters will allow to understand when the e�ects can be relevant and to verify also
the consequences on the asymptotics.



Appendix A

Additional derivations

A.1 DCT-I and DST-I in terms of FFT

DCT-I through FFT

It is easy to verify that a N -terms DCT-I can be expressed through a 2N − 2-terms FFT as

C(x0, x1, . . . , xN−1) = <(Y0, Y1, . . . , YN−1), where (A.1)

(Y0, Y1, . . . , YN−1, Y
∗
N−2, Y

∗
N−3, . . . , Y

∗
1 ) = F(x0/2, x1, x2, . . . , xN−2, xN−1/2, 0, . . . , 0). (A.2)

It is also possible to express a N -terms DCT-I through a N−1-terms FFT with a more complicated
formula

C(x0, x1, . . . , xN−1) = <(Y � exp(−iZ))� (cos(Z) + sin(Z)), (A.3)

where

X0 =

{
(x0, x2, . . . , xN−2, xN−2, xN−4, . . . , x2) if N is even

(x0, x2, . . . , xN−3, xN−1, xN−3, . . . , x2) if N is odd
(A.4)

X1 =

{
(x1, x3, . . . , xN−3, xN−1, xN−3, . . . , x1) if N is even

(x1, x3, . . . , xN−2, xN−2, xN−4, . . . , x1) if N is odd
(A.5)

Y 0 =

(
F
(
X0 +X1

2

)
, 0

)
(A.6)

Y 1 =

(
F
(
i
X0 −X1

2

)
, i

N−1∑′

n=0

(−1)nxn

)
(A.7)

Y = Y 0 + Y 1 =

(
F
(
X0 +X1

2
+ i

X0 −X1

2

)
, i

N−1∑′

n=0

(−1)nxn

)
(A.8)

Z =
π

2

(0, . . . , N − 1)

(N − 1)
(A.9)

and � and � are the Hadamard product and division (i.e. product and division term by term).
To prove this equality it is su�cient to verify that

C(x0, x1, . . . , xN−1)� cos(Z) = <(Y 0 � exp(−iZ)) (A.10)

C(x0, x1, . . . , xN−1)� sin(Z) = <(Y 1 � exp(−iZ)). (A.11)
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Indeed using product-to-sum trigonometric identities it can be seen that

C(x0, x1, . . . , xN−1)� cos(Z) (A.12)

=
(

DCT-II
(x0

2
, x1, x2, . . . , xN−3, xN−2 +

xN−1

2

)
+ DCT-II

(x0

2
+ x1, x2, x3, . . . , xN−2,

xN−1

2

)
, 0
)
/2

(A.13)

=

(
DCT-II

(
x0 + x1

2
,
x1 + x2

2
, . . . ,

xN−2 + xN−1

2

)
, 0

)
= <(Y 0 � exp(−iZ)), (A.14)

where DCT-II is the type-II discrete cosine transform and the last equality can be found in [45].
Similarly we have that

C(x0, x1, . . . , xN−1)� sin(Z) (A.15)

=
(

0,DST-II
(x0

2
, x1, x2, . . . , xN−3, xN−2 −

xN−1

2

)
−DST-II

(
−x0

2
+ x1, x2, x3, . . . , xN−2,

xN−1

2

))
/2

(A.16)

=

(
0,DST-II

(
x0 − x1

2
,
x1 − x2

2
, . . . ,

xN−2 − xN−1

2

))
= <(Y 1 � exp(−iZ)) (A.17)

where DST-II is the type-II discrete sine transform and the proof is completed.

DST-I through FFT

It is also easy to verify that a a N -terms DST-I can be expressed through a 2N + 2-terms DFT as

S(x0, x1, . . . , xN−1) = −=(Y0, Y1, . . . , YN−1), where (A.18)

(Y−1, Y0, . . . , YN , Y
∗
N−1, Y

∗
N−2, . . . , Y

∗
0 ) = F(0, x0, x1, . . . , xN−1, 0, . . . , 0). (A.19)

It is also possible to express a N -terms DST-I through a N+1-terms FFT with a more complicates
formula

(0,S(x0, x1, . . . , xN−1)) = <(Y � exp(−iZ))� (cos(Z) + sin(Z)), (A.20)

where

X0 =

{
(x0, x2, . . . , xN−2, 0,−xN−2,−xN−4, . . . ,−x0) if N is even

(x0, x2, . . . , xN−1,−xN−1,−xN−3, . . . ,−x0) if N is odd
(A.21)

X1 =

{
(0, x1, x3, . . . , xN−1,−xN−1,−xN−3, . . . ,−x1) if N is even

(0, x1, x3, . . . , xN−2, 0,−xN−2,−xN−4, . . . ,−x1) if N is odd
(A.22)

Y 0 = F
(
X0 +X1

2

)
(A.23)

Y 1 = F
(
i
X0 −X1

2

)
(A.24)

Y = Y 0 + Y 1 = F
(
X0 +X1

2
+ i

X0 −X1

2

)
(A.25)

Z =
π

2

(0, . . . , N)

(N + 1)
. (A.26)

The proof is based on the same idea as the case of the DCT-I seen above.
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A.2 Kernel alternative formulations

KGD

The equivalences between 3.204 and 3.205 and between 3.217 and 3.218 follow immediately from
[21, Eq. 4.37.24]

artanh(x) =
1

2
ln

(
1 + x

1− x

)
. (A.27)

The equivalence between 3.205 and 3.206 instead follows directly from the de�nition of artanh(x)
[21, Eq. 4.37.3]

artanhx =

� x

0

1

1− t2
dt. (A.28)

Therefore when s < x we have that

artanh

(√
1− x2

1− s2

)
=

� √
1−x2
1−s2

0

1

1− t2
dt = F

(
arcsin

(√
1− x2

1− s2

)∣∣∣∣1
)

(A.29)

and in the same way in the case when s > x. Finally the equivalence between 3.218 and 3.219 can
be seen in a similar fashion, indeed when s < x we have that

x artanh

(
s

x

√
1− x2

1− s2

)
− s artanh

(√
1− x2

1− s2

)
(A.30)

= x

� s
x

√
1−x2
1−s2

0

dt

1− t2
− s

� √
1−x2
1−s2

0

dt

1− t2
= x

� √
1−x2
1−s2

0

s

x

dt

1− s2

x2
t2
dt− s

� √
1−x2
1−s2

0

dt

1− t2
(A.31)

= s
s2 − x2

x2

� √
1−x2
1−s2

0

t2dt

(1− s2

x2
t2)(1− t2)

= s
s2 − x2

x2
J

(
arcsin

(√
1− x2

1− s2

)
,
s2

x2

∣∣∣∣1
)

(A.32)

and in the same way in the case when s > x.

Radial

The equivalence in 3.223 can be derived as follows

[
E

(
arcsin (s)

∣∣∣∣r2

s2

)
− E

(
arcsin

(s
r

) ∣∣∣∣r2

s2

)]
=

� s

s
r

√
1− r2

s2
t2

√
1− t2

dt (A.33)

=
s

r

� r

1

√
1− t2√

1− s2

r2
t2
dt =

[
B

(
arcsin (r)

∣∣∣∣s2

r2

)
−B

(
s2

r2

)]
s

r
. (A.34)

With some more manipulation also the equivalence between 3.223 and 3.224 can be found. In the
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case s < r we have[
B

(
arcsin (r)

∣∣∣∣s2

r2

)
−B

(
s2

r2

)]
=

� r

1

√
1− t2√

1− s2

r2
t2
dt = (A.35)

−
� √1−r2

0

t2√
1− s2

r2
(1− t2)

√
1− t2

dt = − r√
r2 − s2

� √1−r2

0

t2√
1− s2

s2−r2 t
2
√

1− t2
dt = (A.36)

− r√
r2 − s2

D

(
arcsin(

√
1− r2)

∣∣∣∣ s2

s2 − r2

)
(A.37)

and in the same way in the case when s > x.
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